K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=BC=\sqrt{5}\)

\(\Rightarrow AB=CD=2\sqrt{5}\)

\(\Rightarrow IA=\sqrt{\left(\frac{AB}{2}\right)^2+\left(\frac{AD}{2}\right)^2}=\frac{5}{2}\)

Gọi \(A\left(2a-2;a\right)\Rightarrow\overrightarrow{IA}=\left(2a-\frac{5}{2};a\right)\)

\(\Rightarrow\left(2a-\frac{5}{2}\right)^2+a^2=\frac{25}{4}\Rightarrow5a^2-10a=0\Rightarrow\left[{}\begin{matrix}a=0\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A\left(-\frac{5}{2};0\right)\\A\left(\frac{3}{2};0\right)\left(loại\right)\end{matrix}\right.\)

I là trung điểm AC \(\Rightarrow C\left(\frac{7}{2};0\right)\)

Gọi \(B\left(2b-2;b\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2b+\frac{1}{2};b\right)\\\overrightarrow{CB}=\left(2b-\frac{11}{2};b\right)\end{matrix}\right.\)

\(AB\perp BC\Rightarrow\left(2b+\frac{1}{2}\right)\left(2b-\frac{11}{2}\right)+b^2=0\Rightarrow b=...\)

I là trung điểm BD \(\Rightarrow D\)

27 tháng 5 2018

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2) 

Gọi N ( x N ;   y N ) là tọa độ trung điểm của cạnh BC

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra

x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

29 tháng 9 2019

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2).

Gọi N ( x N   ;   y N   ) là tọa độ trung điểm của cạnh BC.

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra  x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

NV
21 tháng 3 2021

I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:

\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)

Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)

B là giao điểm AB và BC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)

I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)

19 tháng 12 2019

Xét ΔABD vuông tại A có:

Giải bài tập Toán 10 | Giải Toán lớp 10

Do ABCD là hình chữ nhật tâm I nên:

AI = IC = ID = 1/2 BD = 1

ΔICD có ID = IC = DC = 1

⇒ΔICD đều ⇒ ∠(DIC) = 60o

Ta có: ∠(DIC) + ∠(AID ) = 180o⇒ ∠(AID ) = 180o- 60o= 120o

Bài 1: Cho hình chữ nhật ABCD có tâm O.Hỏi có bao nhiêu phép quay tâm O, góc quay \(\alpha\), \(0\leq\alpha\leq2\pi\), biến hình chữ nhật thành chính nó?Bài 2: Cho tam giác đều ABC có tâm O. Phép quay tâm O, góc quay \(\varphi\) biến tam giác đều thành chính nó thì quay \(\varphi\) là góc nào?Bài 3 Chọn 12 giờ làm mốc, khi kim giờ chỉ một giờ đúng thì kim phút đã quay được một góc bao nhiêu độ?Bài 4: Cho lục giác đều ABCDEF, O là tâm đối...
Đọc tiếp

Bài 1: Cho hình chữ nhật ABCD có tâm O.Hỏi có bao nhiêu phép quay tâm O, góc quay \(\alpha\)\(0\leq\alpha\leq2\pi\), biến hình chữ nhật thành chính nó?

Bài 2: Cho tam giác đều ABC có tâm O. Phép quay tâm O, góc quay \(\varphi\) biến tam giác đều thành chính nó thì quay \(\varphi\) là góc nào?

Bài 3 Chọn 12 giờ làm mốc, khi kim giờ chỉ một giờ đúng thì kim phút đã quay được một góc bao nhiêu độ?

Bài 4: Cho lục giác đều ABCDEF, O là tâm đối xứng của nó, I là trung điểm AB. Tìm ảnh của tam giác AOF qua phép quay tâm E góc quay \(60^0\)

Bài 5: Trong mặt phẳng Oxy, cho I(2;1) và đường thẳng d: 2x+3y+4=0. Tìm ảnh của d qua \(Q_{(I;45^0)}\) 

Bài 6: Trong mặt phẳng Oxy, cho phép tâm O góc quay \(45^0\). Tìm ảnh của đường tròn \((C): (x-1)^2+y^2=4\)

0
11 tháng 12 2019

1 tháng 1 2020

Đáp án B

  C D ⊥ S A C D ⊥ A D ⇒ C D ⊥ S D

B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ S A B

O I | | S A S A ⊥ A B C D ⇒ O I ⊥ A B C D
Do ABCD là hình chữ nhật nên không đảm bảo  A C ⊥ B D
, do đó không đảm bảo  B D ⊥ S A C .

13 tháng 9 2018

Đáp án đúng : B