K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2022

Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)

Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)

\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)

Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)

Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:

\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)

Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)

A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)

\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt

Phương trình AQ:

\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)

NV
27 tháng 9 2019

a/ Gọi \(D\left(a;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AD}=\left(a-6;-3\right)\end{matrix}\right.\)

Do A; B; D thẳng hàng \(\Leftrightarrow\frac{a-6}{-9}=\frac{-3}{3}\Rightarrow a=15\) \(\Rightarrow D\left(15;0\right)\)

b/ \(\overrightarrow{AB}=\left(-1;5\right);\) \(\overrightarrow{AD}=\left(-2;10\right)\)

\(\Rightarrow\overrightarrow{AD}=2\overrightarrow{AB}\Rightarrow A,B,D\) thẳng hàng

3 tháng 5 2019

Ta có P ∈ O x  nên P( x; 0) và  M P → = x + 2 ; − 2 M N → = 3 ; − 1 .

Do M, N, P thẳng hàng nên 2 vecto M P → ;    M N →  cùng phương

⇒ x + 2 3 = − 2 − 1 = 2 ⇔ x + 2 = 6 ⇔ x = 4 ⇒ P 4 ; 0 .  

Chọn D.

13 tháng 1 2017

Ta có P ∈ O x  nên P(x; 0) và  M P → = x + 2 ; − 2 M N → = 3 ; − 1 .

Do M, N, P thẳng hàng nên  x + 2 3 = − 2 − 1 ⇔ x = 4 ⇒ P 4 ; 0 .

 Chọn D.