trong mặt phẳng Oxy cho vecto a(2;1) , vecto b(3;-2) và vecto c=2 vecto a +3 vecto b . toạ độ vecto c là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{1\cdot\left(-1\right)+\left(-2\right)\cdot\left(-3\right)}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{5}{\sqrt{5}\cdot\sqrt{10}}=\dfrac{5}{\sqrt{50}}=\dfrac{1}{\sqrt{2}}\)
\(m\overrightarrow{a}=m\left(-1;-2\right)=\left(-m;-2m\right)\)
\(n\overrightarrow{b}=n\left(1;-3\right)=\left(n;-3n\right)\)
\(\Rightarrow m\overrightarrow{a}+n\overrightarrow{b}=\left(-m+n;-2m-3n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-m+n=2\\-2m-3n=-4\end{matrix}\right.\) \(\Rightarrow m-n=-2\) (đảo dấu pt đầu là ra, ko cần giải hẳn ra m; n)
Lời giải:
Gọi \(\overrightarrow{d}=(x,y)\). Theo bài ra ta có:
\(\left\{\begin{matrix} \overrightarrow{a}.\overrightarrow{d}=4\\ \overrightarrow{b}.\overrightarrow{d}=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2x+3y=4\\ 4x+y=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{7}\\ y=\frac{6}{7}\end{matrix}\right.\)
Vậy.......
Dựng \(\overrightarrow{AB}=\overrightarrow{BD}\)
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-3;-2\right)\)
\(\overrightarrow{BD}=\left(x_D-x_B;y_D-y_B\right)=\left(x_D-1;y_D-4\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=-3\\y_D-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=2\end{matrix}\right.\)
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\cos\left(\overrightarrow{BD};\overrightarrow{BC}\right)=\dfrac{-3\cdot6+\left(-2\right)\cdot\dfrac{-5}{2}}{\sqrt{\left(-3\right)^2+\left(-2\right)^2}\cdot\sqrt{6^2+\left(-\dfrac{5}{2}\right)^2}}\)
\(=\dfrac{\left(-18+5\right)}{\sqrt{13}\cdot\sqrt{\dfrac{13}{2}}}-\sqrt{2}\)
\(\Leftrightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=45^0\)