K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

Câu này khó quá em mới chỉ học lớp 4 thui

19 tháng 10 2015

a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 

b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5

3 tháng 6 2015

Bài này mình làm rồi :

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ  a; b; c đều là số lẻ  a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)

    Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.