Cho x và y tỉ lệ thuận với 2, 3; y và z tỉ lệ thuận với 4, 5 và x + y - z = 10
Tìm x, y, z.
Mình giải được rồi nhờ các bạn giải lại xem đúng kết quả cua minh ko nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=3y
=>y=x/3
y=2z
=>x/3=2z
=>x=6z
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k=6
z tỉ lệ thuận với y theo hệ số tỉ lệ k nên ta có z = k.y
y tỉ lệ thuận với x theo hệ số tỉ lệ h nên ta có y = h.x
Do đó z = k.y = k.(h.x) = (k.h).x
Vậy z tỉ lệ thuận với x theo hệ số tỉ lệ k.h
y tỉ lệ thuận với x theo hệ số là 2 => y = 2x
z tỉ lệ thuận với x theo hệ số là 2/3 => z = 2/3 . x
=> \(\frac{y}{z}=\frac{2x}{\frac{2}{3}x}=3\)=> y = 3z
=> y tỉ lệ thuận với z theo hệ số là 3
y tỉ lệ thuận với x theo hệ số là 2 <=> \(\frac{y}{x}=\frac{2}{1}\)\(=\frac{6}{3}\)
z tỉ lệ thuận với x theo hệ số là 2/3 <=> \(\frac{z}{x}\)\(=\frac{2}{3}\)
=> y tỉ lệ thuận với z theo hệ số \(\frac{6}{2}=3\)
x tỉ lệ thuận với y theo hệ số tỉ lệ 1/2
=> \(y=\frac{1}{2}x\)(1)
y tỉ lệ thuận với z theo hệ số tỉ lệ 1/3
=> \(z=\frac{1}{3}y\)(2)
Thế (1) vào (2) ta có : \(z=\frac{1}{3}\cdot\frac{1}{2}x=\frac{1}{6}x\)
=> x tỉ lệ thuận với z ( đpcm ) và hệ số tỉ lệ là 1/6
a ) giả sử x và y là tỉ la\ệ nghịch theo hệ số a
ta có xy=a suy ra y=a/x (1)
mà y là tỉ lệ nghịch theo hệ số tỉ lệ b ta có yz =b (2)
từ (1) và (2) ta có a/y.z suy ra x-a/b.z
vậy x tỉ lệ thuận với z theo hệ số tỉ lệ a/b(a.b là hằng số khác nhau 0)
tự giải tiếp nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ