Bài 5 : Tìm giá trị nguyên dương của x ; y nhỏ hơn 10 sao cho : 3x - 4y = -21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
a: k=-2/5
=>y=-2/5x
Khi x=-1 thì y=2/5
b: Khi y=3 thì -2/5x=3
hay x=3:(-2/5)=-3x5/2=-15/2
Bài 8:
a) A = 2020 – |x + 3|
Có: |x + 3| ≥ 0
=> A ≤ 2020
Dấu ''='' xảy ra khi: |x + 3| = 0
=> x + 3 = 0
=> x = 0 - 3 = -3
Vậy: A sẽ đạt giá trị lớn nhất khi A = 2020 tại x = -3
b/ B = |x – 7| + 68
Có: |x – 7| ≥ 0
=> B ≥ 68
Dấu ''='' xảy ra khi: |x – 7| = 0
=> x - 7 = 0
=> x = 0 + 7 = 7
Vậy:.....
Bài 8
a , A = 2020 - | x + 3 |
Ta có \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow2020-\left|x+3\right|\le2020\forall x\)
\(\Leftrightarrow A\le2020\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy MaxA = 2020 \(\Leftrightarrow x=-3\)
b) B = | x - 7 | + 68
Ta có \(\left|x-7\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-7\right|+68\ge68\forall x\)
\(\Leftrightarrow B\ge68\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x-7\right|=0\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)
Vậy Min B = 68 \(\Leftrightarrow x=7\)
~ Học tốt
# Chiyuki Fujito
" Cho hỏi 𝑆 = (6𝑚2 .......)
thì là 6 . m . 2 hay là \(6m^2\) và mấy cái kia nx"
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)