Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d ; y = x + m. Với giá trị nào của tham số m thì d cắt (C) tại hai điểm phân biệt?
A. m < -2
B. m < 2 hoặc m > 6
C. 2 < m < 6
D. m < -6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
Gọi A là điểm tại (P) có hoành độ bằng 1 \(\Rightarrow y_A=x_A^2=1\Rightarrow A\left(1;1\right)\)
Gọi B là điểm tại d có hoành độ \(x=-3\Rightarrow y_B=-x_B+2=-1\Rightarrow B\left(-3;-1\right)\)
Gọi đường thẳng qua A và B có dạng: \(y=ax+b\) (1)
Thay tọa độ A và B vào (1) ta được:
\(\left\{{}\begin{matrix}a+b=1\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{2}\end{matrix}\right.\)
Vậy hàm số cần tìm là: \(y=\dfrac{1}{2}x+\dfrac{1}{2}\)
Thay y = 3 vào phương trình đường thẳng d 2 ta được − x − 1 = 3 ⇔ x = − 4
Suy ra tọa độ giao điểm của d 1 v à d 2 là (−4; 3)
Thay x = − 4 ; y = 3 vào phương trình đường thẳng d 1 ta được:
2 ( m − 2 ) . ( − 4 ) + m = 3 ⇔ − 7 m + 16 = 3 ⇔ m = 13 7
Vậy m = 13 7
Đáp án cần chọn là: D
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
Đáp án B
2 x + 3 x + 2 = x + m ⇔ 2 x + 3 = x 2 + m x + 2 x + 2 m ⇔ f x = x 2 + m x + 2 m - 3 = 0 ( 1 )
Rõ ràng f - 2 ≠ 0 , ∀ m nên ta cần có ∆ > 0 ⇔ m 2 - 4 2 m - 3 > 0 ⇔ [ m > 6 m < 2 .