x>0 ; y>0 và \(2x+3y\le2\)
Tìm MIN A= \(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 0*3=0
0*4=0
0*5=0
b: 0*6=0
0*7=0
0*8=0
0*9=0
0:6=0
0:7=0
0:8=0
0:9=0
đăng ít thôi bạn! Nếu bạn đăng lẻ ra thì bn sẽ nhận đc sự trợ giúp nhanh hơn !
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
Lời giải:
Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai
Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)
mình sẽ trả lời câu 1 thôi nha
TH1:|x-2|=0
th1:x-2=0=>x=2
th2:x-2=-0 x =-0+2 x=2
TH2:|x+5|=0
th1:x+5=0 x =0-5=-5
th2:x+5=-0 x =-0-5 x=-0+-5=-5
cậu tư suy ra nhé!^^
\(tan10^0.tan80^0.tan20^0.tan70^0.tan30.tan60.tan40.tan50\)
\(=tan10.tan\left(90-10\right).tan20.tan\left(90-20\right).tan30.tan\left(90-30\right).tan40.tan\left(90-40\right)\)
\(=tan10.cot10.tan20.cot20.tan30.cot30.tan40.cot40\)
\(=1.1.1.1=1\)