K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo trên Yahoo nha!

X/2=y/3;y/4=z/5 va x+y-z=10. tim x,y,z

x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1) 
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2) 
Từ (1) và (2) suy ra: 
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2 
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau) 
Vậy: 
x = 2.8=16 
y = 2.12 = 24 
z = 2.15 = 30

20 tháng 8 2018

x/3=y/7=> x/6= y/14

y/2=z/5=> y/14= z/35

=> x/6= y/14= z/35 = (x+y+z)/6+14+35= -110/55= -2

=> x= -12, y= -28, z= -70.

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

20 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

14 tháng 10 2020

cho tao tiền hẳn nắm đấy đi

21 tháng 12 2022

ngáo à

1 tháng 7 2021

Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

1 tháng 7 2021

\(\frac{x}{2}=\frac{y}{3}\)     \(\left(\text{*}\right)\)

\(\frac{y}{4}=\frac{z}{5}\)       \(\left(\text{*}\text{*}\right)\)

\(x+y-z=10\)     \(\left(\text{*}\text{*}\text{*}\right)\)

\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)

\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)  

Cả (*) và (**) thế vào (***)

\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)

\(\Leftrightarrow x=16;z=30\)

Vậy ...