Cho 2 đại lượng tỉ lệ nghịch x và y ; x1 và x2 là 2 giá trị bất kì của x y1, y2 là 2 giá trị tương ứng của y. Tính y1,y2 biết y1+y2=52 và x1=2, x2=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x và y tỉ lệ nghịch
=>\(x=\frac{a}{y}\) (1)
y và z tỉ lệ nghịch
=> \(y=\frac{b}{z}\) (2)
từ (1)và (2) => \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
vậy x và y là 2 đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b) x và y tỉ lệ nghịch
=> \(x=\frac{a}{y}\) (1)
y và z tỉ lệ thuận
=> y = bz (2)
từ (1) và (2) => \(x=\frac{a}{bz}\) hay xy=\(\frac{a}{b}\)
vậy x và z là 2 đại lượng tỉ lệ nghịch theo hệ số tỉ lệ là \(\frac{a}{b}\)
a)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: x = \(\frac{a}{y}\)
Do y và z là hai đại lượng tỉ lệ nghịch
nên : y = \(\frac{b}{z}\)
=> \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
Vậy x và z là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: \(x=\frac{a}{b}\)
Do y và z là hai đại lượng tỉ lệ thuận
nên : \(y=b.z\)
=> \(x=\frac{a}{b.z}\Rightarrow x=\frac{\frac{a}{b}}{z}\)
Vậy x tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{a}{b}\)
cho 3 đại lượng x,y,z . Biết rằng x và y là 2 đại lượng tỉ lệ nghịch , y và z cũng là 2 đại lượng tỉ lệ nghịch . Hỏi x và z là 2 đại lượng gì? vì sao?
Ta có: \(\frac{x_1}{x_2}=\frac{y_2}{y_1}\)
\(\Rightarrow\frac{x_1+x_2}{x_2}=\frac{y_2+y_1}{y_1}\)
\(Hay:\frac{2+3}{3}=\frac{52}{y_1}\)
\(\Rightarrow\frac{5}{3}=\frac{52}{y_1}\)
\(\Rightarrow y_1=\frac{52.3}{5}=31,2\)
Mà: \(y_1+y_2=52\)
\(\Rightarrow y_2=52-y_1=52-31,2=20,8\)