K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

     a) Bậc của đa thức H(x): 3

     b) H(2) = 23 – 2.22 + 5. 2 – 10= 8 – 8 + 10 – 10 = 0

          H(-1) = (-1)3 – 2.(-1)2  + 5. (-1) – 10 = -1 – 2.1  – 5 + 10 = 2

     c) G(x) + H(x) = (– 2x3 + 3x2 – 8x – 1) + (x3 – 2x2 +  5x – 10)

                             = -2x3 + 3x2 – 8x – 1 + x3 – 2x2 + 5x – 10

                             = (-2x3 + x3) + (3x2 – 2x2) + ( – 8x + 5x ) – (10+1)

                             = -x3 + x2 – 3x – 11

        G(x) – H(x) = (– 2x3 + 3x2 – 8x – 1) – (x3 – 2x2 +  5x – 10)

                           = – 2x3 + 3x2 – 8x – 1 – x3 + 2x2 –  5x + 10

                                = (-2x3 – x3) + (3x2 + 2x2) – (8x + 5x) + (-1+ 10)

                            = -3x3 +  5x2 –  13x + 9

11 tháng 7 2016

Ồ! Tớ làm cho....dễ

15 tháng 5 2021

Trả lời câu hỏi của tôi đi. Tí tôi trả lời của bạn chings xác 100% luôn. UY TÍN BẠN NHÉ

11 tháng 5 2022

hi cho mik ít tiền

 

10 tháng 4 2020

dsssws

a: h(x)=4x^2-x+2-x^2-5x+1=3x^2-6x+3

b: bậc là 2

c: h(-1)=3+6+3=12

=>x=-1 ko là nghiệm của h(x)

12 tháng 4 2022

undefined

12 tháng 4 2022

 

 

 

 

20 tháng 5 2021

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

20 tháng 5 2021

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

`a,`

`P(x)=2x^3-2x+x^2-x^3+3x+2`

`= (2x^3-x^3)+x^2+(-2x+3x)+2`

`= x^3+x^2+x+2`

`b,`

`H(x)+Q(x)=P(x)`

`-> H(x)=P(x)-Q(x)`

`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`

`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`

`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`

`= 2x^2+2x+1`

Vậy, `H(x)=2x^2+2x+1.`

NV
7 tháng 5 2023

a.

\(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=x^3-x^2-x+1\)

b.

\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)

\(\Rightarrow H\left(x\right)=2x^2+2x+1\)

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1