Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC; trên tia đối của tia DC lấy điểm F sao cho CD = DF. Chứng minh rằng các đoạn thẳng AC , ED, và BF đồng quy.
mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath
a: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
Vì ABCD là hình bình hành nên nên AB = DC cà AB // DC hay AB = BE và AB // BE
=> Tg AEBD là hình bình hành => AE // BD => \(\widehat{EAB}=\widehat{ABD}\)(SLT)
CM tương tự ta cũng có tg ABDE là hình bình hành => AF // BD => \(\widehat{FAD}=\widehat{ADB}\)(SLT)
Tam giác \(ADB\) có \(\widehat{ADB}+\widehat{ABD}+\widehat{BAD}=180^0\)(DL tổng 3 góc của 1 tam giác)
Mà \(\widehat{EAB}=\widehat{ABD}\); \(\widehat{FAD}=\widehat{ADB}\) (cmt) nên \(\widehat{EAB}+\widehat{FAD}+\widehat{BAD}=180^0\)
Hay F;A;E thẳng hàng
Vì tứ giác AEBD là hình BH nên AE = BD ; tứ giác FABD là hình BH nên AF = BH
Từ 2 điều trên suy ra AE = AF hay A là trung điểm của FE => CA là đường trung tuyến của tam giác ECF
Xét tam giác ECF có ED ; FB ; CA là các đường trung tuyến nên theo TC thì ED ; FB ; CA đồng quy (đpcm)