Cho góc xOy; vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kỳ; trên các tia Ox va Oy lần lượt lấy các điểm A và B sao cho A và B sao cho OA=OB gọi H là giao điểm của AB và Ot. CHứng minh:
a) MA=MB
b) OM là đường trung trực của AB.
c) Cho biết AB=6cm; OA=5cm. Tính OH
(giải nhanh lên giúp mình với! Rồi mình tick cho 2 cái)
a,
Xét tam giác OAM và tam giác OBM,ta có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b,
Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH,ta có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2) => MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c,
Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H Ta có:
OA 2 = OH2 + AH2 ( định lí Py-ta-go)
=> 5 2 = OH2 + 3 2
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
=> OH = 16
=> OH = 4 cm
a,
Xét tam giác OAM và tam giác OBM,ta có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b,
Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH,ta có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2) => MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c,
Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H Ta có:
OA 2 = OH2 + AH2 ( định lí Py-ta-go)
=> 5 2 = OH2 + 3 2
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
=> OH = 16
=> OH = 4 cm