cho tứ giác ABCD có góc A =110 độ ; goc B= 100 độ. Các tia phân giác của góc C và D cắt nhau tại E. Các đường phân giác của các góc ngoài tại C và D cắt nhau ở F. Tính góc CED và góc CFD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
tổng 4 góc của tứ giác = 3600
vậy ta có:
góc A + góc B + góc C + góc D = 3600
800 + 700 + 1100 + góc D = 3600
=> góc D = 3600 - ( 800 + 700 + 1100 ) = 1000
vậy góc D = 1000
Trong các số tự nhiên phạm vi từ 10 000 đến 100 000 có bao nhiêu số thỏa mãn điều kiện: các chữ số của nó theo thứ tự từ trái sang phải là dãy tăng..
Các ví dụ:
- Số 12348 thỏa mãn điều kiện trên vì 1 < 2 < 3 < 4 < 8;
- Số 22345 không thoả mãn vì chữ số thứ nhất (2) và chữ số thứ hai (2) bằng nhau
- Số 12354 không thỏa mãn vì dãy các chữ số 1 ; 2 ; 3 ; 5 ; 4 không phải là dãy tăng. (5 > 4)
Tứ giác ABCD có:
\(A+B+C+D=360^0\)
\(120^0+110^0+80^0+D=360^0\)
\(D=360^0-120^0-110^0-80^0\)
\(D=50^0\)
Góc ngoài ở đỉnh D + D = 1800
Góc ngoài ở đỉnh D + 500 = 1800
Góc ngoài ở đỉnh D = 1800 - 500
Góc ngoài ở đỉnh D = 1300
Câu trả lời hay nhất: Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi,n\bạn lập luận chặt chẽ hơn nhé
Hix.bài mình làm không xong lo đi làm cho người ta!!!!!!!
bạn tham khảo ở đây nha có mấy cách giải đấy mình chưa học đến lướp 8 nên chỉ giúp bạn tìm được thôi https://vn.answers.yahoo.com/question/index?qid=20130616064409AAyMJ8M
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 đô.
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
=> tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => CB = CD (đpcm)
\(\widehat{A}+\widehat{D}=70^o+110^o=180^o\)
=> ABCD là tứ giác nội tiếp (tứ giác có tổng 2 góc đối =180 là tứ giác nt)
\(\widehat{ABD}=\widehat{ACD}\) (góc nt cùng chắn cung AD) (1)
\(\widehat{CBD}=\widehat{CAD}\) (góc nt cùng chắn cung CD) (2)
Tg ADC cân tại D \(\Rightarrow\widehat{ACD}=\widehat{CAD}\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}=\widehat{CBD}\)
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 đô.
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
Suy ra tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) ta có đpcm
trên đấy là giải theo lớp 8, còn giải theo lớp 9 thì chỉ cần nói giả thiết cho ta tứ giác có tổng hai góc đối = 180 độ nên nội tiếp được trong đường tròn và do AC là phân giác nên ta có cung BC có số đo bằng cung CD => CB = CD.
Trên tia AD lấy điểm E sao cho AE = AB
Dễ dàng chứng minh t/g AEC = t/g ABC (c.g.c)
=> góc AEC = góc B = 110 độ và CB = CE (1)
Lại có: góc AEC + góc CED = 180 độ (kề bù)
=>. góc CED = 180 độ - góc AEC = 180 độ - 110 độ = 70 đôj
=> góc CED = góc D = 70 độ
=> t/g CED cân tại C
=> CE = CD (2)
Từ (1) và (2) => CB = CD
Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé
Sao lại 90+80=180 bạn