K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

cho hàm số y = f ( x ) = 4x2 - 7

a)tính f ( 1/2 ); f ( 3 ) ; f ( 0 ) ; f (-2 )

thay f(1/2);f(3);f(0);f(-2) vào hàm số f(x)=4x2-7

f(1/2)=4.(1/2)2-7=-6

f(3)=4.32-7=29

f(0)=4.02-7=-7

f(-2)=4.(-2)2-7=-24

10 tháng 2 2020

cảm ơn ạ ^-^

18 tháng 2 2019

16 tháng 12 2021

a) f(3) = 4.3^2 - 5 = 31

b) f(x) = -1

<=> 4x^2 - 5 = -1

<=> 4x^2 = 4

<=> x = 1 hoặc x = -1

c) f(x) = 4x^2 - 5 = 4(-x)^2 - 5 = f(-x)

16 tháng 12 2021

a: f(3)=4x3^2-5=31

25 tháng 10 2019

Chọn C.

Ta có 

Do đó hàm số y =  f ( 4 x - 4 x 2 )  có ba điểm cực trị là 0; 1 2 ;1

21 tháng 11 2017

18 tháng 12 2019

Ta có f x = 4 x 2 + 4 x + 3 2 x + 1 dx

= ∫ 2 x + 1 + 2 2 x + 1 d x = x 2 + x + ln x + 1 + C

Do f(0) = 1 nên c = 1. Suy ra  f x = x 2 + x + ln 2 x + 1 + 1

Vậy a : b : c = 1 : 1 : 1

Đáp án B

9 tháng 11 2019

Ta có 

Đặt  bất phương trình trở thành: 

Kẻ đường thẳng y=5-2x qua các điểm (0;5), (1;3) nhận thấy t ∈ 0 ; 1  thì f '(t)<5-2t

Khi đó 

Chọn đáp án B.

14 tháng 1 2020

Cái này nhớ không nhầm là toán 7 :>

a) Gọi x1 và x2 là hai gtrị tương ứng của x

Giả sử x1<x2

Vì y=f(x) =-5x

\(\Rightarrow\)f(x1)=-5x1

\(\Rightarrow\)f(x2)=-5x2

mà x1<x2 \(\Rightarrow\)f(x1)>f(x2)

\(\Rightarrow\)Hs là hs nghịch biến

b) Vì y=f(x)=-5x

\(\Rightarrow\)f(x1)+4f(x2)

=-5x1+4(-5)x2

=-5(x1+4x2)  (*)

\(\Rightarrow\)f(x1+4x2)=-5(x1+4x2)  (**)

Từ (*), (**) \(\Rightarrow\)f(x1+4x2)=f(x1)+4f(x2)

c) Vì y=f(x)=-5x

\(\Rightarrow\)-f(x)=5x  (*)

\(\Rightarrow\)f(-x)=-5(-x) =5x  (**)

Từ (*) và (**) \(\Rightarrow\)-f(x) =f(-x) 

8 tháng 10 2017

Đặt t = f ( f ( x ) - 1 ) - 2  phương trình trở thành: 

f ( t ) = 1 ⇔ t 4 - 4 t 2 + 1 = 1 ⇔ t = 0 ; t = ± 2

TH1: Nếu

t = 0 ⇔ f ( f ( x ) - 1 ) - 2 = 0 ⇔ f ( f ( x ) - 1 ) = 2

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 2 ⇔ a 4 - 4 a 2 - 1 = 0 ⇔ a = ± 2 + 5

Nhận xét: Xét hàm số y = f ( x ) - 1 = x 4 - 4 x 2  có  y c d = y ( 0 ) = 0 ; y c t = y ± 2 = - 4

Với a ∈ - 4 ; 0  phương trình y = a có bốn nghiệm thực phân biệt. Với a = 0 phương trình y = a có hai nghiệm thực phân biệt. Với a < -4 phương trình y = a vô nghiệm.

Áp dụng cho trường này có 2 + 4 = 6 nghiệm.

TH2: Nếu

t = - 2 ⇔ f ( f ( x ) - 1 ) - 2 = - 2 ⇔ f ( f ( x ) - 1 ) = 0

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 0 ⇔ a 4 - 4 a 2 + 1 = 0 ⇔ a = ± 2 + 3

Trường hợp này có 2 + 2 + 4 + 4 = 12 nghiệm.

TH3: Nếu t = 2 ↔ f ( f ( x ) - 1 ) = 4  Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 4 ⇔ a 4 - a = ± 4 a 2 - 3 = 0 ⇔ a = ± 2 + 7

Trường hợp này có 2 + 4 = 6 nghiệm.

Vậy phương trình đã cho có tất cả 24 nghiệm thực phân biệt.

Chọn đáp án A.