Tìm các chữ số a; b; c khác 0 thỏa mãn: \(\overline{abbc}=\overline{ab}\times\overline{ac}\times7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) để a4b ⋮ 2 và 5
thì b=0
để a40 ⋮ 3 và 9 thì tổng các chữ số phải ⋮ 9
⇒ \(\left(a+4\right)\text{⋮}9\)
⇒ \(a=5\)
Vậy a=5, b=0
c) để 2a5b ⋮5 thì b=0 hoặc 5
Nếu b=0 thì a=2
Nếu b=5 thì a=7
Vậy (a,b)=\(\left\{\left(2;0\right);\left(7;5\right)\right\}\)
a tích các chữ số có 1 chữsố bằng 120 là
120 = 3x5x8
vậy số tự nhiên bé nhất có tích là 120 là 385
nhớ kic cho mik nhé
nhưng bài này sai thôi tớ ko biết đâu
- ta có 10a + b +10b +a =176
<=> 10(a+b) +a +b =176
<=> 11(a+b) =176
<=> a + b =16
=> a=7 và b=9 hoặc a=9 và b=7 (vì a khác b)
- Theo đề ta có : c+b=c =>b=0
Vì ac và cb là số có hai chữ số => a=1
=> 10 +c +10c = 100 + c
=> 10c = 90
=>c=9
Vậy số cần tìm là 109
Bài 1:
Giải:
Ta có:
\(\overline{ab}+\overline{bc}=176\)
\(\Rightarrow10a+b+10b+a=176\)
\(\Rightarrow11a+11b=176\)
\(\Rightarrow11\left(a+b\right)=176\)
\(\Rightarrow a+b=16\)
Vì a, b là chữ số nên ta có bảng sau:
a | 7 | 9 | 8 |
b | 9 | 7 | 8 |
Vậy các cặp số \(\left(a;b\right)\) là: \(\left(7;9\right);\left(9;7\right);\left(8;8\right)\)
Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)
\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)
\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)
Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy \(a=1,b=9,c=5\)
Bấm vào câu hỏi tương tự đi bạn .
Anh Lê Mạnh Tiến Đạt giải rồi đấy