tìm 3 số a; b; c biết a/3 = b/5 = c/7 và a + b - c = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)
1) A=\(\frac{3}{3x+5}\)
Thay x= -2 vào biểu thức trên ta có:
A= \(\frac{3}{3.\left(-2\right)+5}=\frac{3}{-6+5}=\frac{3}{-1}=-3\)
Vậy A= -3
2)\(\frac{3}{8}=\frac{3}{3x+5}\)
=> 3.(3x+5)=24
3x+5=24:3
3x+5=8
=>3x=3
=>x=1
\(\frac{3}{3x+5}\) ta thấy x =-2 vào phân số
\(\frac{3}{3.\left(-2\right)+5}\)= 3
2) thay A bằng \(\frac{3}{8}\)vào biểu thức ta có:
\(\frac{3}{8}=\frac{3}{3.x+5}\)
x=1
a) Ta có :
\(45=3^2\cdot5\)
\(204=2^2\cdot3\cdot17\)
\(126=2\cdot3^2\cdot7\)
\(ƯCLN\left(45,204,126\right)=3\)
b) Ta có :
\(45=3^2\cdot5\)
\(204=2^2\cdot3\cdot17\)
\(126=2\cdot3^2\cdot7\)
\(BCNN\left(45,204,126\right)=2^2\cdot3^2\cdot5\cdot7\cdot17=21420\)
a) A là phân số khi n+6 là số nguyên khác 0
\(\Rightarrow n\ne-6\)
Vậy n là số nguyên khác -6.
b) Với n=2, ta có : \(\frac{-3}{n+6}=\frac{-3}{2+6}=\frac{-3}{8}\)
Với n=4, ta có : \(\frac{-3}{n+6}=\frac{-3}{4+6}=\frac{-3}{10}\)
c) A là số nguyên khi -3\(⋮\)n+6
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-7;-5;-9;-3\right\}\)
a)Để A là phân số thì \(n+6\ne0\Leftrightarrow n\ne-6\)
Vậy để A là phân số thì \(n\ne-6\)
b) Thay n=2(tm) vào A, ta có:
\(A=\frac{-3}{2+6}=\frac{-3}{8}\)
Thay n=4 (tm) vào A, ta có:
\(A=\frac{-3}{4+6}=\frac{-3}{10}\)
c) Để A là số nguyên \(\Rightarrow\frac{-3}{n+6}\)là số nguyên
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
n+6 | -3 | -1 | 1 | 3 |
n | -9 | -7 | -5 | -3 |
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
\(\frac{a}{3}=10\Leftrightarrow a=30\)
\(\frac{b}{5}=10\Leftrightarrow b=50\)
\(\frac{c}{7}=10\Leftrightarrow c=70\)
Vậy a = 30 ; b = 50 ; c = 70
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) va a+b-c=10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
Suy ra : \(\frac{a}{3}=10\Rightarrow a=10.3=30\)
\(\frac{b}{5}=10\Rightarrow b=5.10=50\)
\(\frac{c}{7}=10\Rightarrow c=7.10=70\)
Vậy : x=30 ; y=50 và z=70