K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Tui nghĩ đề bị thiếu rồi. Phải là \(\Delta ABC\)có \(AB=AC\) mới đúng.

A B C D H

Trên nửa m.phẳng bờ \(BC\)chứ \(A\) vẽ tia \(Bx\)sao cho \(\widehat{CBx}=20^0\)

Gọi \(D\)là giao điểm của \(Bx\)và \(AC\)\(H\)là hình chiếu của \(A\)trên \(Bx\)

Theo đề ta có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\) và \(\widehat{A}=20^0\Rightarrow\widehat{ABC}=\widehat{ACB}=80^0\)

Lại có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}=80^0\)

Và: \(\widehat{CBx}=20^0\Rightarrow\widehat{ABH}=60^0\Rightarrow BH=\frac{b}{2};AH=\frac{\sqrt{3}b}{2}\)

\(\Rightarrow\Delta CBD\)cân tại \(B\Rightarrow BD=BC=a\)

Lại có: \(\Delta CBD~\Delta CAB\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{CD}{BC}\Rightarrow CD=\frac{a^2}{b}\)

Ta có: \(AD=AC-CD=b-\frac{a^2}{b};DH=BH-BD=\frac{b}{2}-a\)

Áp dụng định lí Pitago trong \(\Delta ADH\)vuông tại \(H\) có:

\(\Rightarrow AD^2=AH^2+DH^2\)

Vì vậy: \(\left(b-\frac{a^2}{b}\right)^2=\left(\frac{\sqrt{3}b}{2}\right)^2+\left(\frac{b}{2}-a\right)^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=\frac{3b^2}{4}+\frac{b^2}{4}-ab+a^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=b^2-ab+a^2\)

\(\Leftrightarrow\frac{a^4}{b^2}+ab=3a^2\)

\(\Leftrightarrow a^3+b^3=3ab^2\left(đpcm\right)\)

6 tháng 2 2020

ồ xin lỗi, đánh thiếu đề

THANKS!

b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)

c: Số đo góc ở đỉnh là:

\(180-2\cdot20^0=140^0\)

d: Số đó góc ở đáy là:

\(\dfrac{180^0-60^0}{2}=60^0\)

a:Xét tứ giác BHKC có \(\widehat{BHC}=\widehat{BKC}=90^0\)

nên BHKC là tứ giác nội tiếp

b: Xét đường tròn ngoại tiếp tứ giác BHKC có 

\(\widehat{BHC}\) là góc nội tiếp chắn cung BC

\(\widehat{HKB}\) là góc nội tiếp chắn cung HB

mà BC>HB

nên \(\widehat{BHC}>\widehat{HKB}\)

13 tháng 11 2016
mọi người ơi giúp mình với.
13 tháng 11 2016

2.tự vẽ hình nhe

xét tam giác abc có

Góc CAx= góc B+góc C =40 + 10=80<đlí góc ngoài tam giác>

Vì Ac là phân giác của A

Góc A1=A2=1/2A=40

Ta có A2=C=40

Mà hai góc này ở vị trí so le trong

suy ra ax song song BC

1 tháng 11 2018

Giải 

Bạn cân hình cho vuông góc nha! Mình không cân được.

N A B M C E D

Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .

Do đó :

\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay

\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)

Tương tự ta cũng có :

\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)

Từ (1) và (2) suy ra :

\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)

Xét 2 tam giác ABC và EAD,chúng có : 

\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)

Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)

b) Do 2 tam giác ABC và AED = nhau ta có :

\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)

Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .

=> CM = AN

Hai tam giác AMC = AND có :

AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)

Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)