Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O là trung điểm của BC.
Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).
Từ đó CE // AB, BD // AC.
Suy ra \(\Delta ABN\sim\Delta ECN\).
b) Theo tính đối xứng ta có BM = CN.
Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).
Dễ dàng suy ra đpcm.
xét đường tròn tâm o có
C là điểm chính giữa nằm trên nửa đường tròn
=> cung CA = cung CB
=> CA=CB điều 1 ...liên hệ giữa cung và dây
mặt khác. góc CBNlaf góc nội tiếp chắn cung CN
góc NMC là góc nội tiếp chắn cung CN
=> góc CBN = góc NMC
lại có cung BN = cung CM
=> BN=MC
xét tam giác CBN và Tam giác NMC có
CN chung
BN = MC
góc CBN= góc NMC
=> 2 tam giác bằng nhau => MN = BC điều 2
từ 1 và 2 => MN= CA =CB
a, Vì Mx lần lượt là tiếp tuyến (O)
=> ^PMN = 900
Ta có ^EPM = ^EMN ( cùng phụ ^PME )
Lại có cung ME = cung EN => ME = EN
=> tam giác EMN vuông cân tại E vì ^MEN = 900 ( góc nt chắn nửa đường tròn)
=> ^MPE = ^MNP mà ^PMN = 900
Vậy tam giác PMN vuông cân tại M
b, Ta có ^EFN = ^EMN ( góc nt chắn cung EN )
mà ^QPE = ^EMN (cmt)
=> ^NFE = ^QPE mà ^NFE là góc ngoài đỉnh F
Vậy tứ giác EFQP là tứ giác nt 1 đường tròn
a) Xét tam giác DAC và tam giác DBE có:
\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)
\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).
b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.
c) Dễ thấy I là trung điểm của FD.
Từ đó tam giác ICD cân tại I.
Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).