K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

a) Gọi O là trung điểm của BC.

Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).

Từ đó CE // AB, BD // AC.

Suy ra \(\Delta ABN\sim\Delta ECN\).

b) Theo tính đối xứng ta có BM = CN.

Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).

Dễ dàng suy ra đpcm.

26 tháng 2 2021

xét đường tròn tâm o có

C là điểm chính giữa nằm trên nửa đường tròn

=> cung CA = cung CB     

=> CA=CB       điều 1  ...liên hệ giữa cung và dây

mặt khác.     góc CBNlaf góc nội tiếp chắn cung CN

                    góc NMC là góc nội tiếp chắn cung CN 

=> góc CBN = góc NMC  

lại có cung BN = cung CM 

=> BN=MC

xét tam giác CBN  và Tam giác NMC có

       CN chung

      BN = MC

     góc CBN= góc NMC 

=> 2 tam giác bằng nhau => MN = BC     điều 2

từ 1 và 2 => MN= CA =CB

15 tháng 3 2022

a, Vì Mx lần lượt là tiếp tuyến (O) 

=> ^PMN = 900

Ta có ^EPM = ^EMN ( cùng phụ ^PME ) 

Lại có cung ME = cung EN => ME = EN 

=> tam giác EMN vuông cân tại E vì ^MEN = 900 ( góc nt chắn nửa đường tròn) 

=> ^MPE = ^MNP mà ^PMN = 900

Vậy tam giác PMN vuông cân tại M 

b, Ta có ^EFN = ^EMN ( góc nt chắn cung EN ) 

mà ^QPE = ^EMN (cmt) 

=> ^NFE = ^QPE mà ^NFE là góc ngoài đỉnh F 

Vậy tứ giác EFQP là tứ giác nt 1 đường tròn 

 

26 tháng 5 2021

a) Xét tam giác DAC và tam giác DBE có:

\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)

\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).

b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.

c) Dễ thấy I là trung điểm của FD.

Từ đó tam giác ICD cân tại I.

Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).