Bài 1 : Cho \(\dfrac{U+2}{U-2}\) = \(\dfrac{V+3}{V-3}\) và \(U^2\) + \(V^2\) = 52 .
Tính U ; V .
Bài 2 : Cho \(\dfrac{x}{y}=\dfrac{z}{t}\) . Cmr \(\dfrac{x.y}{z.t}=\dfrac{\left(x+y\right)^2}{\left(z+t\right)^2}\) .
Bài 3 : Cho \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=\text{4}\) . Tính M \(\dfrac{a-3b+2c}{a'-3b'+2c'}\) .
Bài 4 : Cho \(\left(a_2\right)^2=a_1.a_3;\left(a_3\right)^2=a_2.a_4\) .
Cmr \(\dfrac{\left(a_1\right)^2+\left(a_2\right)^2+\left(a_3\right)^2}{\left(a_2\right)^2+\left(a_3\right)^2+\left(a_4\right)^2}=\dfrac{a_1}{a_3}\) .
Bài 5 : Cho \(\dfrac{a}{c}=\dfrac{c}{b}\) . Cmr :
a) \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
b) \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-c}{a}\)
5a
Ta có \(\dfrac{a}{b}=\dfrac{a^2}{b^2}\) ; \(\dfrac{c}{d}=\dfrac{c^2}{d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)=> \(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=>\(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=\(\dfrac{a^2+c^2}{b^2+d^2}\)(T/c cuả dãy tỉ số bằng nhau)
=> ĐPCM
Xin lỗi nha mình nhầm đề. Nhưng bạn chỉ cần thay d bằng c là được.