cho dãy số (un) thỏa mãn U1 = 2 ; Un = 2U(n-1)+3n -1.tìm số hạng thứ 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Phương pháp: Dễ thấy u n = u n - 1 + 6 , ∀ n ≥ 2 suy ra dãy số đã cho là cấp số cộng công sai bằng 6.
Vậy ta cần tìm số hạng đầu.
Cách giải: Ta có
log 2 u 5 + log 2 u 9 + 8 = 11
V ậ y u 1 = u 5 - 4 . 6 = 8
Do đó:
S n = u 1 + u 2 + . . + u n
= n u 1 + n ( n - 1 ) 2 d
= 3 n 2 + 5 n
⇔ 3 n 2 + 5 n - 32 > 0
Vậy số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 là 3.
Đáp án A
Đặt u 1 = tan α ⇒ u 2 = tan α + tan π 8 1 − tan α . tan π 8 = tan α + π 8 .
Tương tự dung quy nạp suy ra:
u n = tan α + π n − 1 8 ⇒ u 2018 = tan α + 2017 π 8 = tan α + π 8 = u 2 = 7 + 5 2 .
Đáp án A
Ta có tan π 8 = 2 − 1 suy ra u n + 1 = u n + tan π 8 1 − tan π 8 . u n
Đặt tan φ = 2 suy ra u 1 = tan φ → u 2 = u 1 + tan π 8 1 − tan π 8 . u 1 = tan φ + tan π 8 1 − tan φ . tan π 8 = tan φ + π 8
Do đó u 3 tan φ + 2. π 8 → u n tan φ + n . π 8
Vậy u 2018 = tan φ + 2017. π 8 = tan φ + π 8 = u 2 = 2 + 2 − 1 1 − 2 2 − 1 = 7 + 5 2
\(u_n=2u_{n-1}+3n-1\)
\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)
Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội 2
\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)
\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)
\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)