Cho ( O ; R ) và dây cung \(BC=R\sqrt{3}\) cố định . Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn . Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB . Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K ( K khác A ) . Gọi H là giao điểm của BE và CF .
a) Chứng minh KA là phân giác trong góc BKC và tứ giác BHCK nội tiếp .
b) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất , tính diện tích lớn nhất của tứ giác đó theo R .
c) Chứng minh AK luôn đi qua một điểm cố dịnh .