Cho ∆ABC nhọn (AB < AC) nội tiếp (O; R). Hai đường cao BE, CF cắt nhau tại H a) C/m: BCEF nội tiếp b) Gọi S là giao điểm của EF với BC. C/m: SE.SF = SB. SC c) Gọi I. K lần lượt là trung điểm của HC, BC. AH cắt BC tại D. C/m: Tứ giác IKDB nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ∆ABC nhọn, đường cao BM, CN (M thuộc AC, N thuộc AB) nội tiếp (O). Chứng tỏ OA vuông góc với MN.
a) Xét tứ giác BEDC có:
ˆBEC=ˆBDCBEC^=BDC^
ˆBECBEC^và ˆBDCBDC^ cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp
b) Do BEDC là tứ giác nội tiếp nên: ˆBED+ˆBCD=180oBED^+BCD^=180o
Mà ˆBED+ˆDEA=180o⇒ˆBCD=ˆDEABED^+DEA^=180o⇒BCD^=DEA^(*)
Mặt khác ta có:
ˆxAB=ˆACBxAB^=ACB^(cùng chắn cung AB)
hay ˆxAE=ˆBCDxAE^=BCD^(**)
Từ (*) và (**) suy ra ˆDEA=ˆxAEDEA^=xAE^
=> xy song song với ED (2 góc sole trong) (đpcm)
c) Do tứ giác BEDC là tứ giác nội tiếp
Mà ˆEBDEBD^và ˆECDECD^cùng nhìn cạnh ED
=> ˆEBD=ˆECDEBD^=ECD^(đpcm)
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp
- Dựng đường kính AK của (O).
- △ACK nội tiếp đường tròn đường kính AK nên △ACK vuông tại C.
- Xét △AHB và △ACK có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{ACK}=90^0\\\widehat{ABH}=\widehat{AKC}\left(=\dfrac{1}{2}sđ\stackrel\frown{BC}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHB\sim\Delta ACK\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AK}\Rightarrow AH=\dfrac{AB.AC}{2R}\)
\(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{\dfrac{AB.AC}{2R}.BC}{2}=\dfrac{AB.AC.BC}{4R}\)