K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

1.khỏi cần nói nhiều

2. Ta có TG AHB vuông => AD.AB = AH^2 (1)

             TG AHC vuông =>AE.AC = AH^2 (2) Từ 1 và 2 => AD.AB=AE.AC

Cái vẽ đường kính OAK là cái hell gì vậy

28 tháng 5 2017

là kẻ AO giao vs đường tròn tại K

16 tháng 7 2021

a) Ta có: \(\angle AEH+\angle AFH=90+90=180\Rightarrow AEHF\) nội tiếp

b) AEHF nội tiếp \(\Rightarrow\angle EFA=\angle EHA=90-\angle BHE=\angle ABC\)

c) Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle OAC+\angle ABC=90\Rightarrow\angle OAC+\angle AFE=90\Rightarrow OA\bot EF\)

undefined

16 tháng 7 2021

cảm ơn bạn 

 

1: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

2: Gọi Ax là tiếp tuyến tại A của (O)

góc xAC=1/2*sđ cung AC

góc ABC=1/2*sđ cung AC

=>góc xAC=góc ABC

mà góc ABC=góc AEF

nên góc AEF=góc xAC

=>EF//Ax

=>OA vuông góc EF

22 tháng 9 2020

Ta có ; \(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)

=> D là điểm chính giữa cung BC

=> DO vuông góc với BC tại trung điểm H của BC

lại có: \(\Delta BDM~\Delta BCF\Rightarrow\frac{BD}{BC}=\frac{DM}{CF}\Rightarrow\frac{BD}{2BH}=\frac{\frac{1}{2}DA}{CF}\Rightarrow\frac{BD}{BH}=\frac{DA}{CF}\)

Mà \(\widehat{D_1}=\widehat{C_2}\)( bẹn chứng minh ở phần a nhé)

\(\Rightarrow\Delta BDA~\Delta HCF\left(c.g.c\right)\Rightarrow\widehat{F_1}=\widehat{A_1}\)(2  góc tương ứng)

Mà A1=A2(gt) và A2=E1(cùng chắn 1 cung DC).

F1=E1=> tam giác EFHC nội tiếp

a: AE là phân giác của góc BAC

=>EB=EC

mà OB=OC

nên OE là trung trực của BC

=>OE vuông góc BC

=>OE//AH

b: Điểm M ở đâu vậy bạn?

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiêp

b: góc ABM=góc ACN

=>sđ cung AM=sđ cung AN=2*30=60 độ

=>AM=AN

c: OM=ON

AM=AN

=>OA là trung trực của MN

=>OA vuông góc MN

d: Kẻ đường kính AD

Xét ΔACD vuông tại C và ΔAKB vuông tại K có

góc ADC=góc ABK

=>ΔACD đồng dạng với ΔAKB

=>AC/AK=AD/AB

=>AK*2*R=AB*AC

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD