K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

16 tháng 10 2016

sử dụng đồng dư thức hoặc hằng đẳng thức

24 tháng 4 2017

Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016

Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017

=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)

2016D = 2016 + 20162 + 20163 + ... + 20162017

=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)

\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)

Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)

= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015

= 20172017.20162017 - 20172017.2016 + 20162017.2015

= 20172017.(20162017 - 2016) + 20162017.2015 > 0

=> A > B

24 tháng 4 2017

Ta có 

\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)

\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)

\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)

\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)

Có 20172017>20162017 ;  20172016>20162016 ;  20172015>20162015;..... ; 2017>2016

=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)

=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)

=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)

28 tháng 3 2017

Bằng \(-\frac{2}{11}\)

17 tháng 10 2016

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

16 tháng 10 2016

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn