Cho góc vuông xOy, điểm A trên tia Ox, điểm B trên tia Oy. Lấy điểm E trên tia đối của tia Ox, điểm F trên tia Oy sao cho OE=OB; OF=OA
a) Chứng minh rằng AB=EF và AB vuông góc với EF
b) Gọi M và N lần lượt là trung điểm của AB và EF. Chứng minh rằng tam giác OMN vuông cân.
tui bít rùi nè
a) tam giác AOB= tam giác FOE(c-g-c)\(\Rightarrow\)AB=EF và\(\widehat{A}=\widehat{F}\)
Xét tam giác FOE vuông tại O có\(\widehat{E}+\widehat{F}\)=900 \(\Rightarrow\widehat{E}+\widehat{A}=90^0\)\(\Rightarrow\widehat{H}=90^0\)\(\Rightarrow\)AB vuông góc vs EF
b) M là trung điểm của AB \(\Rightarrow\)BM=1/2 AB; N là trung điểm của EF\(\Rightarrow\)EN =1/2EF mà AB =EF(cmt) nên BM=EN\(\left(1\right)\). Lại có
\(\widehat{E}=\widehat{B_1}\)\(\Rightarrow\)tam giác BOM =tam giác EON (c-g-c)\(\Rightarrow\)OM=ON và\(\widehat{O_1}=\widehat{O_2}.\)Ta có\(\widehat{O_2}+\widehat{O_3}=90^0\Rightarrow\widehat{O_1}+\widehat{O_3}=90^0\)
\(\widehat{MON=90^0\left(2\right)}\).Từ\(\left(1\right)\)và\(\left(2\right)\Rightarrow\)Tam giác MON vuông cân
a) tam giác AOB= tam giác FOE(c-g-c)⇒AB=EF và = Xét tam giác FOE vuông tại O có + =90 0 ⇒ + = 90 0 ⇒ = 90 0 ⇒AB vuông góc vs EF b) M là trung điểm của AB ⇒BM=1/2 AB; N là trung điểm của EF⇒EN =1/2EF mà AB =EF(cmt) nên BM=EN 1 . Lại có = ⇒tam giác BOM =tam giác EON (c-g-c)⇒OM=ON và = . Ta có + = 90 0 ⇒ + = 90 0 .Từ 1 và 2 ⇒Tam giác MON vuông cân ^A ^F ^E ^F ^E ^A ^H (2 ) ^E ^B 1 ^O 1 ^O 2 ^O 2 ^O 3 ^O 1 ^O 3 ^ MON = 90 0