Bài 1: Cho tam giác ABC vuông tại A, lấy P thuộc BC, gọi M, N lần lượt là hình chiếu của P trên AB, AC. Chứng minh rằng:
a) PN/AB=CP/BC; MP/AC=BP/BC
b) PN/AB + MP/AC=1
Giúp mik vs mọi người ơi mai mik ktra rồi:(( THANKS TRƯỚC NHA:))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH=góc ADH=góc DAE=90 độ
=>AEHD nội tiếp
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạng với ΔAHD
c: ΔAHC vuông tại H có HE vuông góc AC
nên HE^2=AE*EC
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
a: Xét ΔCEF có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCEF cân tại C
Xét ΔBAF vuông tại A và ΔBFK vuông tại K co
BF chung
góc ABF=góc KBF
=>ΔBAF=ΔBFK
=>BA=BK
b: BA=BK
FA=FK
=>BF là trung trực của AK
=>BF vuông góc AK
=>AK//CH
c: Gọi M là giao của CH với AB
Xét ΔBMC có
BH,CA là đường cao
BH cắt CA tại F
=>Flà trực tâm
=>MF vuông góc BC
=>CH,FK,AB đồng quy
a: Xét ΔCAB có PN//AB
nên PN/AB=CP/CB
Xét ΔBAC có MP//AC
nên MP/AC=BP/BC
b: PN/AB+PM/AC
=CP/BC+BP/BC
=1