K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

Xét tứ giác BNMC có NM//BC

nên BNMC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BNMC là hình thang cân

31 tháng 10 2021

a: Xét ΔABC có

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Do đó: MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BMNC là hình thang cân

31 tháng 10 2021

Mk cảm ơn nhiều nhưng còn các câu còn lại giúp mk vs ạ

a: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

hay BCMN là hình thang

Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

E là trung điểm của GB(gt)

F là trung điểm của GC(gt)

Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

a)

Xét tứ giác MNPQ có 

G là trung điểm của đường chéo MP(gt)

G là trung điểm của đường chéo NQ(gt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) 

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(gt)

CN là đường trung tuyến ứng với cạnh AB(gt)

BM cắt CN tại G(gt)

Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)

Ta có: G là trung điểm của MP(gt)

nên MG=GP

mà \(MG=\dfrac{1}{3}MB\)

nên \(MG=GP=\dfrac{1}{3}MB\)

Ta có: MG+GP=MP(G nằm giữa M và P)

nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)

Ta có: G là trung điểm của NQ(gt)

nên \(GN=GQ=\dfrac{1}{3}NC\)

Ta có: NG+GQ=NQ(G là trung điểm của NQ)

nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔBAC cân tại A)

nên AN=NB=AM=MC

Xét ΔAMB và ΔANC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

AM=AN(cmt)

Do đó: ΔAMB=ΔANC(c-g-c)

Suy ra: BM=CN(hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra NQ=MP

Hình bình hành MNPQ có NQ=MP(cmt)

nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

9 tháng 7 2021

cảm ơn bạn nha hihi

24 tháng 10 2021

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

P là trung điểm của GB

Q là trung điểm của GC

Do đó: PQ là đường trung bình của ΔGBC

Suy ra: PQ//BC và \(PQ=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành