Từ đỉnh góc tù B của hình bình hành ABCD, kẻ đường cao BK vuông góc với AD, BI vuông góc với CD, K thuộc AD, I thuộc CD. Gọi H là trực tâm của tam giác BIK. Tính độ dài BH, biết BD=17cm; IK=15cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(xin lỗi vì mình không biết chèn hình, các bạn chịu khó tự vẽ. Cảm ơn ạ)
Gọi O là giao điểm 2 đường chéo
I là trung điểm BK
H là trung điểm BE
Xét tam giác(tg) BKD có
I là trung điểm BK
O là trung điểm BD
=>OI là đường trung bình của tgBKD
=> OI // KD
=> OI \(\perp\)BK
Lại có I là trung điểm BK
=> O \(\in\)đường trung trực của BK
*Tương tự ta sẽ chứng minh được O \(\in\)đường trung trực của BE
Từ đó suy ra O là trực tâm của tgBKE
Ta có BO = BD:2
<=> BO = \(\frac{5}{2}\)
Vậy...
Done~
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
1: Xet ΔABH và ΔHDK có
góc ABH=góc HDK
góc AHB=góc HKD
=>ΔABH đồng dạng với ΔHDK
=>AB/HD=BH/DK=BN/DM
Xet ΔABN và ΔHDM có
góc ABN=góc HDM
AB/HD=BN/DM
=>ΔABN đồng dạng vơi ΔHDM
b: ΔOBN đồng dạng với ΔKDH
=>OB/KD=BN/DH
=>OB/BN=KD/DH
=>OB/2BN=DM/DH
=>OB/BH=DM/DH
Xét ΔOBH và ΔMDH có
góc OBH=góc MDH
OB/BH=MD/DH
=>ΔOBH đồng dạng với ΔMDH
=>góc OHB=góc DHM
=>O,H,M thẳng hàng
tự vẽ hình nhé .
a) tứ giác ANMD có :
AN = 1/2 AB ; DM = 1/2 CD
\(\Rightarrow\)AN = DM (AB = CD )
mà AB // CD \(\Rightarrow\)AN // DM
\(\Rightarrow\)ANMD là hbh .
mà AN = AD ( = 1/2 AB ) \(\Rightarrow\)ANMD là hình thoi .
b) \(\Delta\)vuông AHB có :
HN là trung tuyến của AB . \(\Rightarrow\)HN = 1/2 AB
và MN = 1/2 AB ( MN = AN )
\(\Rightarrow\)\(\Delta\)HNM cân tại N .
bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá