Bài 6: Cho tam giác ABC; Gọi M, N, P lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi I
là giao điểm của AP và MN. C/m: a) IA = IP b) IM = IN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(AB)/(AC)=2/3 = (2x)/(3x) (x >0)`
Áp dụng hệ thức lượng trong tam giác vuông:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(6^2)=1/(4x^2)+1/(9x^2)`
`<=> x=\sqrt13`
`=> AB=2\sqrt13 (cm) ; AC=3\sqrt13 (cm)`
Áp dụng định lí Pytago:
`AB^2+AC^2=BC^2`
`=> BC=13(cm)`
`=>` Chu vi là: `13+5\sqrt13 (cm)`.
Ta có: \(\widehat{DCB}=\widehat{CBA}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Xét tứ giác ABDC có DC//BA
nên ABDC là hình thang
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình thang vuông
\(BC=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A=148\left(cm\right)\)
Kẻ AH⊥BC tại H
Xét ΔABD có
AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)
nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)
Xét ΔACD có
AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)
nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)
Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)
\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)
Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng
mọi người ơi giúp mình bài này với mình cần gấp bài này