K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.

a) CMR: DE vuông góc với CF; EF=CM.

b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.

c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất

ai tích mình tích lại 

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

9 tháng 8 2021

a) AEMF là hình chữ nhật nên AE=FM

\(\Delta DFM\) vuông cân tại suy ra FM=DF

⇒AE=DF suy ra ΔADE=ΔDCF(c.g.c)

⇒DE=CF

Gọi \(DE\cap CF=H\)

Ta có ΔADE=ΔDCF(c.g.c)

\(\Rightarrow\widehat{ADE}=\widehat{DCF}\)

\(\Rightarrow\widehat{ADE}+\widehat{DFH}=\widehat{DCF}+\widehat{DFH}=90\)

\(\Rightarrow\Delta FHD\) vuông tại H

\(\Rightarrow CF\perp DE\)

9 tháng 8 2021

b) Kẻ thêm AM

Ta được AM=EF (AEMF là hcn)

Dễ thấy \(\Delta ADM=\Delta CDM\left(c.g.c\right)\)

(do AD=DC; DM chung; góc ADM = góc CDM)

Nên AM=CM, mà AM=EF

Vậy CM=EF

Gọi \(EM\cap CD=N;CM\cap EF=I\)

Dễ chứng minh \(\Delta AEM=\Delta NMC\left(c.g.c\right)\)

(AE=MN; EM=NC; góc AEM = góc MNC)

Nên góc MAE = góc CMN = góc IME (đối đỉnh)

Mà \(\widehat{MAE}+\widehat{AME}=90\) nên \(\widehat{IME}+\widehat{AME}=90\)

Suy ra \(\widehat{IME}+\widehat{IEM}=90\) (\(\widehat{AME}=\widehat{MEI}\))

\(\RightarrowĐPCM\)

 

28 tháng 11 2016

Gọi I là giao điểm của DE và CF

MFA = FAE = AEM = 900

=> AEMF là hình chữ nhật

BD là tia phân giác của hình vuông ABCD

=> EBM = 450

mà tam giác EBM vuông tại E

=> Tam giác EBM vuông cân tại E

=> EB = EM

mà EM = AF (AEMF là hình chữ nhật)

=> FA = EB

mà AD = AB (ABCD là hình chữ nhật)

=> AB - EB = AD - FA

=> AE = FD

Xét tam giác EAD và tam giác FDC có:

EA = FD (chứng minh trên)

EAD = FDC (= 900)

AD = DC (ABCD là hình chữ nhật)

=> Tam giác EAD = Tam giác FDC (c.g.c)

=> ADE = DCF (2 góc tương ứng)

mà AED = CDE (2 góc so le trong, AB // CD)

=> ADE + AED = DCF + CDE

mà ADE + AED = 900 (tam giác AED vuông tại A)

=> DCF + CDE = 900

=> Tam giác IDC vuông tại I

=> DE _I_ CF

28 tháng 11 2016

ôi trời ơi, vừa nói lúc chiều là về tạo tk luôn, chứng tỏ dân chơi thời nay là có thật

24 tháng 10 2018

Là Sao bạn ???