K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Chữ đẹp quá sư phụ!

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: BC=10cm

AH=4,8cm

BH=3,6cm

c: DB/DC=AB/AC=6/8=3/4

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B

20 tháng 5 2022

Ap dụng định lý py ta go ta có 
\(BC^2=AB^2+AC^2\\ BC^2=9+16=25\\ BC=5\left(cm\right)\)
 

a: BC=15cm

Xét ΔABC có AC<AB<BC

nên \(\widehat{B}< \widehat{C}< \widehat{A}\)

b: Xét ΔEAD có 

EC là đường cao

EC là đường trung tuyến

DO đó: ΔEAD cân tại E

c: Xét ΔDAB có 

C là trung điểm của AD

CE//AB

Do đó: E là trung điểm của BD

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

13 tháng 9 2021

1.

\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)

13 tháng 9 2021

2.

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)

Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)