Cho hình thang cân ABCD có AB//CD và AB < CD, đường chéo BD vuông góc với cạnh bên BC, đường cao BH.
a) Chứng minh tam giác BDC và tam giác HBC đồng dạng
b)Cho BC=6cm; DC=10cm. TÍnh độ dài đoạn thẳng HC, HD
c) CM: HB*2=HD.HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
a) Xét tam giác BDC và HBC có:
góc DCB chung; góc BHC = DBC (= 90o)
=> tam giác BDC đồng dạng HBC (g - g)
b) => \(\frac{BC}{HC}=\frac{DC}{BC}\Rightarrow HC.DC=BC^2\Rightarrow HC=\frac{BC^2}{DC}=\frac{15^2}{25}=\frac{225}{25}=9\)cm
HD = CD - HC = 25 - 9 = 16 cm
c) Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BH2 = BC2 - CH2 = 225 - 81 = 144 => BH = 12 cm
Kẻ AK vuông góc với CD tại K
Tam giác ADK = BCH (do cạnh huyền AD = BC; góc ADK = BCH)
=> DK = CH = 9 cm
Dễ có: tứ giác ABHK là hình bình hành => AB = HK = CD - CH - DK = 25 - 9 - 9 = 7 cm
S ABCD = (AB + CD) . BH : 2 = (7 + 25) . 12 : 2 = 192 cm vuông
Sửa đề: đường cao BH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
Sửa đề: Đường cao BH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC
b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:
\(DC^2=BD^2+BC^2\)
\(\Leftrightarrow BD^2=25^2-15^2=400\)
hay BD=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:
\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)
a, Xét Δ BDC và Δ HBC, có :
\(\widehat{DBC}=\widehat{BHC}=90^o\)
\(\widehat{BCD}=\widehat{HCB}\) (góc chung)
=> Δ BDC ∾ Δ HBC (g.g)
b, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{DC}{BC}=\dfrac{BC}{HC}\)
=> \(\dfrac{10}{6}=\dfrac{6}{HC}\)
=> \(HC=\dfrac{6.6}{10}\)
=> HC = 3,6 (cm)
Ta có : DC = DH + HC
=> 10 = DH + 3,6
=> DH = 6,4 (cm)
c, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{BC}{HC}=\dfrac{BD}{HB}\)
Xét Δ DHB và Δ BHC, có :
\(\widehat{DHB}=\widehat{BHC}=90^o\)
\(\dfrac{BC}{BD}=\dfrac{HC}{HB}\) (cmt)
=> Δ DHB ∾ Δ BHC (c.g.c)
=> \(\dfrac{DH}{BH}=\dfrac{HB}{HC}\)
=> \(HB^2=DH.HC\)