K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2015

\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\)

\(C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(D=\frac{1}{51.100}+\frac{1}{52.99}+\frac{1}{53.98}+...+\frac{1}{99.52}+\frac{1}{100.51}\)

\(D=\frac{1}{151}.\left(\frac{151}{51.100}+\frac{151}{52.99}+\frac{151}{53.98}+...+\frac{151}{99.52}+\frac{151}{100.51}\right)\)

\(D=\frac{1}{151}.\left(\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+...+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\right)\)

\(D=\frac{1}{151}.\left(\frac{2}{100}+\frac{2}{99}+...+\frac{2}{51}\right)\)

\(D=\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)\)

\(\Rightarrow C:D=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)}\)

\(\Rightarrow C:D=\frac{151}{2}=75\frac{1}{2}\)

 

4 tháng 4 2016

Khó hiểu vậy ạ, giảng kĩ đc ko bạn :)

9 tháng 6 2017

Có nhầm lẫn j ko vậy bn??

9 tháng 6 2017

chắc là ko

7 tháng 5 2016

G = \(1^2\)+\(2^2\)\(3^2\)+....+\(100^2\)

G=1 +2(1+1) +3(2+1) +..... + 100(99+1)

G=1 + 1.2+ 2 + 2.3 +3+ ......+ 99.100+100

G=(1+2+3+....+100) +(1.2+2.3+.....+99.100)

G= \(\frac{100\left(100+1\right)}{2}\)+\(\frac{100\left(100-1\right)\left(100+1\right)}{3}\)

G=5050+333300

G=338350

 

https://olm.vn/hoi-dap/question/119017.html

tham khảo ở đó nhé!!!

14 tháng 11 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{97.98}+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9506}+\dfrac{1}{9900}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9506}+\dfrac{1}{9900}\right)\)

\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{97.98}+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< \dfrac{5}{6}\left(2\right)\)

\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

Chúc bạn học tốt!

14 tháng 11 2017

cảm ơn bạn nhiều nha

mình cũng chúc bạn học tốt

7 tháng 5 2016

Fx3=1x2x3+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98

Fx3=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100

Fx3=99x100x101

F=333300

7 tháng 5 2016

3F = 1 . 2 . 3 + 3 . 4 . ( 5 - 2 ) + 5 . 6 . ( 7 - 4 ) +.....+ 99 . 100 . (101 - 98 )

3F = 1. 2 . 3 + 3. 4 . 5 - 2 . 3 . 4 + 5 . 6 . 7 - 4 . 5 . 6 +.....+ 99 . 100 . 101 - 98 . 99 . 100

3F = 1 . 2 . 3 + 99 . 100. 101

3F = 3 . 2 + 3 . 33 . 100 . 101

3F = 3 ( 2 + 333 300)

=>F = 3 . 333 302 : 3

=> F = 333 302

Vậy F = 333 302

8 tháng 5 2016

Hinh nhu khong dung ban a

5 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

5 tháng 5 2019

Nhầm tưởng tính tích :v

Ta có :

\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=50.\frac{1}{51}=\frac{50}{51}< \frac{99}{100}\)

\(\Leftrightarrow A>B\)