Cho tam giác ABC có AB<AC. Gọi d là đường trung trực của BC, E là giao điểm của d và AC. Gọi K là một điểm bất kì thuộc d và khác E.Vậy ta có:
Chu vi AKB> Chu vi AEB ; Chu vi AKB = chu vi AEB ; Chu vi AKB< Chu vi AEB ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của đường trung trực của BC với BC . Nối KC
Ta có tam giác EIC = tam giác EIB ( c.g.c )
=> CE = BE ( hai cạnh tương ứng )
chu vi tam giác AEB = AE + AB + BE = AE + AB + CE ( do BE = CE )
=> chu vi tam giác ABE = AB + AC ( do AE + CE = AC )
tam giác KIB = tam giác KIC ( c.g.c )
=> KB = KC ( hai cạnh tương ứng )
chu vi tam giác AKB = AK + BK + AB = AK + KC + AB ( do BK = CK )
xét tam giác ACK theo bất đẳng thức tam giác ta có
AK + CK > AC
=> AK + CK + AB > AC + AB
=> chu vi tam giác ABK > chu vi tam giác ABE
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Chu vi của tam giác ABC là 21cm \(\Rightarrow AB+AC+BC=21 \Leftrightarrow BC=21-6-7=8 (cm)\)
\(\Rightarrow BC>AC>AB\)
\(\Rightarrow \hat{A} > \hat{B} > \hat{C}\) (Quan hệ giữa góc và cạnh đối diện trong tam giác).
-△ABC∼△HBA (g-g) \(\Rightarrow\dfrac{P_{ABC}}{P_{HBA}}=\dfrac{BC}{BA}=\dfrac{20}{12}=\dfrac{5}{3}\Rightarrow\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Rightarrow AB=\dfrac{3}{5}BC\)
-△ABC vuông tại A có: \(AB^2+AC^2=BC^2\Rightarrow\dfrac{9}{25}BC^2+AC^2=BC^2\Rightarrow AC^2=\dfrac{16}{25}BC^2\Rightarrow AC=\dfrac{4}{5}BC\)
-△ABC∼△HAC (g-g) \(\Rightarrow\dfrac{P_{ABC}}{P_{HAC}}=\dfrac{BC}{AC}=\dfrac{BC}{\dfrac{4}{5}BC}=\dfrac{5}{4}\Rightarrow\dfrac{20}{P_{HAC}}=\dfrac{5}{4}\Rightarrow P_{HAC}=\dfrac{20.4}{5}=16\left(cm\right)\)