cho n thuộc N*; Chứng minh rằng :A=111...1211..11 là hợp số (n chữ số 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đê A là số nguyên thì n+2 chia hết cho n-5 và n-5 chia hết cho n-5
=>n+2-(n-5) chia hết cho n-5
<=>n+2-n+5 chia hết cho n-5
<=> 7 chia hết cho n-5
=> n-5 thuộc {-1;1;-7;7}
<=>n thuộc {4;5;-2;12}
a)để A thuộc Z hay a là số nguyên
=>n-1 chia hết n-3
<=>(n-1)-2 chia hết n-3
=>2 chia hết n-3
=>n-3\(\in\){1,-1,2,-2}
=>n\(\in\){4,2,5,1}
b)vì mẫu số của ps luôn luôn\(\ne0\) =>n\(\ne\)3 và 0;n\(\in\)Z
a) cách 1
2^4n = (24)n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
cách 2
(2^4n+1)+3
=2*(24)n+3
=2*16n+3
=2(15 + 1)n+3
=2(5K+1) +3(với K là một số tự nhiên thuộc N)
=10K+5 chia hết cho 5
b ) áp dụng vào giống bài a thay đổi số thôi là đc
k mk nha!!!^~^
Ta có : (24.n+1)+3 = (.....6) + 1) + 3 = (.....0)
=> (24.n+1)+3 có chữ số tận cùng là 0
=> (24.n+1)+3 chia hết cho 5
B=3A nen B chia het cho 3 nhung neu the thi A chia het cho 3 nen B chia het cho 9 nhung the A van chia het cho 9.
do vay B chia het cho 27