Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng đang gặp bài này, có ai biết bài này kh giải chi tiết ra giùm mình với nhé
a: S BMC=2/3*90=60cm2
b: S ANC=1/3*90=30cm2
=> S AMN=1/3*30=10cm2
S ABN=2/3*90=60cm2
=>S AMNB=70cm2
a) Xét tam giác BMC và tam giác BCA có chung chiều cao hạ từ B xuống AC; đáy CM = 1/3 đáy CA
=> S (BMC) = 1/3 x S(BCA) = 1/3 x 180 = 60
Xét tam giác BMC và tam giác NMC có: chung chiều cao hạ từ đỉnh M xuống cạnh BC; đáy CN = 2/3 đáy CB
=> S(NMC) = 2/3 x S (BMC) = 2/3 x 60 = 40
S(AMNB) = S (ABC) - S(MNC) = 180 - 40 = 140
b) Xét tam giác ABN và tam giác ABC có chung chiều cao hạ từ A xuống đáy BC; đáy BN = 1/3 đáy BC
=> S(ABN) = 1/3 x S (ABC) = 1/3 x 180 = 60
=> S(AMN) = A(AMNB) - S(ABN) = 140 - 60 = 80
=> Tỉ số S(AMN)/ S(ABN) = 80/60 = 4/3
=> Chiều cao hạ M xuống AN : Chiều cao hạ từ B xuống AN = 4: 3 (Vì tam giác ABN và tam giác AMN có chung đáy AN)
Mà tam giác ABK và AMK có chung đáy AK
=> S(AMK) : S(ABK) = 4: 3
Xét 2 tam giác AMK và ABK có chung chiều cao hạ từ A xuống BM ; đáy lần lượt là KM; KB
=> KM/ KB = 4/3
a) Xét tam giác BMC và tam giác ABC có :
- Đáy MC = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BMC = 1/2 S tam giác ABC
S tam giác BMC là : 180 x 1/2 = 90 (cm2)
* Xét tam giác BAN với tam giác ABC có :
- Đáy BN = 2/3 Đáy BC
- Chung chiều cao hạ từ đỉnh A
=> S tam giác BAN = 2/3 S tam giác ABC
S tam giác BAN là : 180 x 2/3 = 120 (cm2)
*) Xét tam giác NAC và tam giác ABC có :
Đáy NC = 1/3 Đáy BC
Chung chiều cao hạ từ đỉnh A
=> S tam giác NAC = 1/3 S tam giác ABC
S tam giác NAC là : 180 x1/3 = (60 cm2)
*) Xét tam giác NAC với tam giác NAM có :
- Đáy AM = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh N
=> S tam giác NAM = 1/2 S tam giác NAC
S tam giác NAM là : 60 x 1/2 = 30 (cm2)
S tứ giác AMNB là 120 + 30 = 150 (cm2)
b) *) Xét tam giác BAN và tam giác BAK có :
- Đáy AK = 1/2 Đáy AN
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BAK = 1/2 S tam giác BAN
S tam giác BAK là : 120 x 1/2 = 60 (cm2)
Đáp số : a) BMC = 90 cm2 ; AMNB = 150 cm2
b) BAK = 60 cm2
\(\dfrac{S_{ABC}}{S_{ANC}}=\dfrac{BC}{NC}=3\Rightarrow S_{ANC}=\dfrac{1}{3}\cdot240=80\left(cm^2\right)\\ \dfrac{S_{ANC}}{S_{MNC}}=\dfrac{AC}{MC}=\dfrac{5}{2}\Rightarrow S_{MNC}=\dfrac{2}{5}S_{ANC}=32\left(cm^2\right)\\ \Rightarrow S_{AMNB}=S_{ABC}-S_{MNC}=240-32=208\left(cm^2\right)\)
Áp dụng Menelaus cho tam giác ANC và cát tuyến BKM
\(\dfrac{AK}{NK}\cdot\dfrac{NB}{CB}\cdot\dfrac{CM}{AM}=1\\ \Rightarrow\dfrac{AK}{NK}\cdot\dfrac{1}{3}\cdot\dfrac{2}{3}=1\\ \Rightarrow\dfrac{AK}{NK}=\dfrac{9}{2}\)
Áp dụng Menelaus cho tam giác BMC và cát tuyến AKN
\(\dfrac{BK}{MK}\cdot\dfrac{MA}{CA}\cdot\dfrac{CN}{BN}=1\\ \Rightarrow\dfrac{KB}{KM}\cdot\dfrac{3}{2}\cdot\dfrac{1}{2}=1\\ \Rightarrow\dfrac{KB}{KM}=\dfrac{4}{3}\)