Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC tại D; CE vuông góc với AB tại E . Gọi O là giao điểm của BD và CE
a. Chứng minh : Tam giác ADB = Tam giác AEC
b. Chứng minh : Tam giác BOC cân
c. Chứng minh : ED song song với BC
d. Gọi M là trung điểm của BC . Chứng minh : EM = 1/2BC
Chú ý vẽ cả hình . Giúp mình nha!
a ) Tam giác cân ABC có BD , CE là đường cao => BD , CE cũng là đường trung tuyến ứng với cạnh AC , AB
mà AB = AC => AE = AB = AD = AC
Xét \(\Delta ADB\)và \(\Delta AEC\)có :
AB = AC ( do tam giác ABC cân )
\(\widehat{ADB}=\widehat{AEC}\) \(\left(=90^o\right)\)( do \(BD\perp AC\), \(CE\perp AB\))
AD = AE ( cm trên )
nên \(\Delta ADB=\Delta AEC\)( c.g.c )
b ) Do \(\Delta ABC\) cân => \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{ECB}\)
Mà \(\widehat{ABD}=\widehat{ACE}\)( do \(\Delta ADB=\Delta AEC\)phần a ) => \(\widehat{DBC}=\widehat{ECB}\)
=> \(\Delta BOC\)cân
Mấy phần còn lại tự làm , hình dễ tự vẽ
A)Vì tam giác ABC cân tại A
=> ABC = ACB
=> AB = AC
Xét tam giác AEC (AEC = 90) và tam giác ADB(ADB=90) ta có :
AB = AC
Góc A chung
=> tam giác AEC = tam giác ADB ( ch-gn)
B) Tự xét tam giác ECB = tam giác DBC (cgv-gn)
=> EB = DC tương ứng
Xét tam giác EBO vuông tại E và tam giác DCO vuông tại D ta có :
EB = DC
EOB = DOC (đối đỉnh)
=> 2 tam giác trên bằng nhau
=> BO = OC tương ứng
=> tam giác BOC cân tại B