Bài 1: Cho hình vẽ D=60; C=120
Chứng minh AB vuông góc với b
Bài 2: Cho hình vẽ
Chứng tỏ a//b//c
Các bạn giúp mình nhé, cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều
a) Phân tích bài toán
Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và\(\widehat{QPR}=60^0\). Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ∆PHQ = ∆PHR (cạnh huyền, cạnh góc vuông), suy ra \(\widehat{HPQ}=\widehat{HPR}=30^0\) Từ đó suy ra cách vẽ hai đường xiên PQ và PR.
Kẻ\(PH\perp d\) (H ∈ d). Dùng thước đo góc để vẽ góc HPx bằng 30°. Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ. Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR. Do HQ = HR nên PQ = PR.
Hơn nữa\(\widehat{QPR}=2\widehat{HQP}=60^0\)
b) Hướng dẫn
- Tam giác PQR có PQ = PR và \(\widehat{QPR}=60^0\), tam giác PQR là tam giác đều
PQ = 18cm => QR =18cm ; HQ = HR =9cm.
Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và ∠(QPR) = 60°.
Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ΔPHQ = ΔPHQ (cạnh huyền, cạnh góc vuông),
suy ra ∠(HPQ) = ∠(HPR) = 30°. Từ đó suy ra cách vẽ hai đường xiên PQ và PR.
Kẻ PH ⊥ d (H ∈ d).
Dùng thước đo góc để vẽ góc HPx bằng 30°.
Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ.
Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR.
Do HQ = HR nên PQ = PR.
Hơn nữa ∠(QPR) = 2∠(HPQ) = 60°.
b) Hướng dẫn
- Tam giác PQR có PQ = PR và ∠(QPR) = 60°, tam giác đó là tam giác đều
- PQ = 18cm ⇒ QR =18 cm ; HQ = HR =9 cm
Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)
Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)
Từ 1,2 =>a//b//c