Cho tam giác ABC ( AB = AC > BC) . Trên AB và AC lấy 2 điểm M và N sao cho BM= AN. Gọi o là điểm cách điều 3 đỉnh A; B; C của tam giác ABC
a) Chứng miinh góc ABO = góc CAO
b) Chứng minh: O cách đều hai điểm M và N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có điểm O cách đều 3 đỉnh tam giac => O là giao của 3 đường trung trực
Vì tgiac ABC có AB=AC=> tgiac ABC cân tại A mà AK vuông góc với BC => AK là tia phân giác của góc BAC
=> góc BAK= góc CAK(1)
Xét tgiac AHO và tgiac BHO có:
OH chung
góc AHO= góc BHO=90
HA=HB( vì OH là đường trung trực của AB)
=> tgiac AHO=tgiac BHO(c.g.c)
=> góc HBO= góc HAO(2 góc tương ứng)(2)
Từ (1) và(2) => góc ABO= góc CAO
b.xét tgiac MOB và tgiac NAO có:
BM=AN(gt)
góc MBO= góc NAO(cmt)
OB=OA(tính chất đường trung trực)
=> tgiac MOB=tgiac NAO(c.g.c)
=> Om=ON(2 cạnh tương ứng)
chị ơi giúp em bài nì với ạ
Ở miền trong góc tù xOy, vẽ các tia Oz, Ot sao cho Oz vuông góc với Ox, Ot vuông góc với Oy
a/ Góc toz là góc gì?
b/ So sánh góc xOt và yoz
c/ Tính tổng 2 góc xoy và tOz
vẽ giúp em cái hình được ko ạ
Hình bạn tự vẽ nhé.
a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)
nên \(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)
AB = AC
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\) (đpcm)
b. Gọi giao điểm của MN và AD là S
Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)
Xét \(\Delta AMS\) và \(\Delta ANS\) có:
AS là cạnh chung
\(\widehat{MAS}=\widehat{NAS}\) (chứng minh trên)
AM = AN (gt)
\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)
Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AS\perp MN\)
hay \(AD\perp MN\) (đpcm)
c. Ta có: AM = AN (gt)
\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\) (định lí)
hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Lại có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
\(\Rightarrow\) MN // BC (dấu hiệu nhận biết) (*)
Xét \(\Delta MOP\) và \(\Delta BDO\) có:
MO = BO (vì O là trung điểm của BM)
\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)
OD = PO (gt)
\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)
\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) MP // BC (dấu hiệu nhận biết) (**)
Từ (*), (**)
\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC (trái với tiên đề Ơ-clit)
\(\Rightarrow\) 3 điểm P, M, N thẳng hàng (đpcm)
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
Vì O là điểm cách đều 3 đỉnh của tam giác => O là giao điểm của 3 đường trung trực của tam giác ABC.
Vì tam giác ABC có AB=AC nên Tam giác ABC cân tại A => Đoạn AO thuộc đường trung trực, đường trung tuyến, đường phân giác của tam giác ABC => góc BAO = góc CAO (1)
Vì O cách đều 3 đỉnh của tam giác ABC nên ta có : OA = OB => tam giác AOB cân tại O
=>góc ABO = góc BAO (2)
từ (1) và (2) suy ra : góc ABO = góc CAO
b, Xét tam giác OMB và tam giác ONA có :
OA = OB ( cmt )
góc ABO = góc CAO hay góc MBO = góc NAO
BM = AN ( Gt )
=> tam giác OMB = tam giác ONA (c.g.c)
=> OM = ON hay O cách đều M và N