Câu 10: Cho ∆ABC nhọn, cân tại A, đường cao AD, trực tâm H. Biết AH = 14 cm; BH = HC = 30 cm. khi đó AD = ….. cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.
Đặt x=HD;
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':
AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):
AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;
Thế vào (***) ta được ph.tr:
(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm
Cho tam giác ABC cân tại A có trực tâm H biết AH = 14 cm ; BH = 30 cm. Tính AB
Làm đầy đủ nha các bạn
Gọi H' đối xứng với H qua BC, D là giao điểm của AH và BC.
Dễ thấy BHCH' là hình thoi.
\(\Rightarrow\Delta ABH'\)vuông tại B
\(\Rightarrow H'B^2=H'D.H'A\)
\(\Leftrightarrow BH^2=HD\left(2HD+14\right)\)
\(\Leftrightarrow30^2=HD\left(2HD+14\right)\)
\(\Leftrightarrow\orbr{\begin{cases}HD=18\\HD=-25\left(l\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AD=14+18=32\\BD=\sqrt{30^2-18^2}=24\end{cases}}\)
\(\Rightarrow AB=\sqrt{32^2+24^2}=40\)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K