K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

Không biết số liệu góc của $BAC$ đã đúng chưa nhưng mình có thể chỉ hướng giải này cho em.

Kẻ $BH$ vuông góc với $AC$

Khi đó ta có:

\(BH=a\sin A\)

\(AH=a\cos A\)\(\Rightarrow CH=AC-AH=a-a\cos A\)

Áp dụng định lý Pitago cho tam giác vuông $BHC$ ta có:
\(BC^2=BH^2+CH^2\)

\(\Rightarrow b^2=(a\sin A)^2+(a-a\cos A)^2\)

\(b^2=a^2\sin ^2A+a^2+a^2\cos ^2A-2a^2\cos A\)

\(b^2=a^2(\sin ^2A+\cos ^2A)+a^2-2a^2\cos A\)

\(b^2=a^2+a^2-2a^2\cos A=2a^2-2a^2\cos A=2a^2(1-\cos A)\) (nhớ rằng tổng bình phương của sin và cos một góc bất kỳ thì bằng 1)

\(\Rightarrow b=a\sqrt{2(1-\cos A)}\)

Thay vào :

\(a^3+b^3=a^3(1+\sqrt{8(1-\cos A)^3})\)

\(3ab^2=6a^3(1-\cos A)\)

Nếu $A=20^0$ như bài đã cho thì ta thấy \(a^3+b^3\neq 3ab^2\) .

4 tháng 8 2018

Akai Haruma thầy giúp em với

\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

=>BC/sin120=a/sin30=2a

=>BC=a*căn 3

25 tháng 2 2018

A B C D E

Ta thấy AB = BD (GT) ; AC=CE (GT)

Mà AB = AC ( do tam  gaics ABC cân tại A)

Nên BD=CE

Ta thấy ^DBA = 180 dộ - ^ABC

           ^ECA = 180 độ - ^ACB

mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA

Xét tam giác ABD và tam giác ACE có: 

              AB = AC

               ^BDA = ^ECA (cmt)

             BD = CE ( cmt )

suy ra tam giác ABD = tam giác ACE (c.g.c)

Suy ra ^D = ^ E ( 2 cạnh tương ứng)

Suy ra tam giac ADE cân tại A

+, ta thấy DE = BD + BC + CE

MÀ BD =AB ( GT ); CE= AC (GT)

Suy ra DE = AB+ BC+AC

b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180

                              32 + ^ABC + ^ ACB =180

                               ^ABC + ^ACB = 180-32=158

Suy ra ^ABC = ^ ACB = 158 :2 = 79

Mà ^ABC là góc ngoài của tam giac ABD cân tại b

Nên ^D=79:2=39,5

Suy ra D =^E= 39,5( tam giác ADE cân)

SUY ra DAC= 180-39,5-39,5=101