K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

10 tháng 2 2019

A B C M E K

Cm: Xét t/giác BAM và t/giác BEM

có góc A = góc MEB = 900 (gt)

     BM : chung

  góc ABM = góc MBE (gt)

=> t/giác BAM = t/giác BEM (ch -gn)

b) Ta có: t/giác BAM = t/giác BEM (cmt)

=> AB = BE (hai cạnh tương ứng)

=> t/giác BAE là t/giác cân tại B

c) Do t/giác BAM = t/giác BEM (cmt)

=> AM = EM (hai cạnh tương ứng)

Ta có: góc BAM + góc MAK = 1800

=> góc MAK = 1800 - 900 = 900 => góc MAK = góc MEC

Xét t/giác AMK và t/giác EMC

có góc MAK = góc MEC = 900 (cmt)

   AM = EM (cmt)

  góc AMK = góc EMC (đối đỉnh)

=> t/giác AMK = t/giác EMC (g.c.g)

=> AK = EC (hai cạnh tương ứng)

Mà AB + AK = BK

   BE + EC = BC

 và AB = BE (Cmt)

=> BK = BC => t/giác BKC là t/giác cân tại B

Xét ΔBAM vuông tại A và ΔBEM vuông tại E có

BM chung

góc ABM=góc EBM

=>ΔBAM=ΔBEM

=>MA=ME

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

12 tháng 5 2019

đề bài bn cho sai đấy nhé,chỗ "gọi E là giao điểm của ME và AB" ấy, ở đó đáng lẽ pk là F là giao điểm đúng ko? mk đã sửa lại rồi đấy.

a) ta có tam giác ABM=tam giác EBM(CH-GN)

=> AB=EB

gọi H là giao điểm của AE và MB

xét tam giác HBA và tam giác HBE có:

         HB cạnh chung

        \(\widehat{HBA}\)=\(\widehat{HBE}\)(gt)

       AB=EB(cmt)

=> tam giác HBA=tam giác HBE(c.g.c)

=> HA=HE => H là trung điểm của AE(1)

 \(\widehat{AHB}\)=\(\widehat{EHB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AHB}\)=\(\widehat{EHB}\)=90 độ 

=> BH\(\perp\)AE(1)

từ (1) và (2) suy ra BM là trung trực của AE

b) xet 2 tam giác vuông AMF và EMC có:

          AM=ME(vì t.giác ABM=t.giác EBM)

        \(\widehat{AMF}\)=\(\widehat{EMC}\)(vì đối đỉnh)

=> tam giác AMF=tam giác EMC(cạnh góc vuông-góc nhọn kề)

=> MC=MF(2 cạnh tương ứng)

A B C M E F H

29 tháng 4 2017

hình bạn tự vẽ nha

a) theo định lí pi-ta-go ta có

AB^2 + AC^2 = BC^2

Hay: 5^2 + AC^2 = 13^2

=) AC^2 = 13^2 - 5^2 = 169 - 25 = 144

=) AC = 12cm

b) Xét tam giác BAM và tam giác BEM có

góc ABM = góc EBM

BM là cạnh chung

góc BAM = góc BEM = 90 độ 

=)  tam giác BAM = tam giác BEM ( g - c - g )

=) BA = BE ( cạnh tương ứng )

=) tam giác ABE là tam giác cân

câu c, d mình đang nghĩ

11 tháng 2 2018

a)  2 tam giác = nhau (cạnh huyền góc nhọn )

b) gọi i guiao điểm BM và AE .2 tam giác trên bằng nhau => AB=BE Nên tam giác ABE cân tại B dễ dàng cm 2 tam giác ABi và BIE =nhau theo trường hoợ (g-c-g).tự cm rta đc vuông góc

c) Xét 2 tam giác MEC và AMN . góc MAB =90 độ,góc MEC= 90 độ. AM=ME ( vì tam giacs ABM= tam giác BEM). gocs AMN= gocs EMC.xong 2 tam giác bằng nhau theo trường hợp (g-c-g)