Cho tam giác ABC vuông tại A, biết AC=5; BC=10. Số đo góc ABC là:
A.300 B.750 C.450 D.600
(giải chi tiết)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago cho tam giác vuông ABC ta có
BC2 = AC2 + AB2 => AB2 = 132 – 52
=> AB2 = 144 => AB = 12 cm
Suy ra SABC= A C . A B 2 = 5.12 2 = 30 cm2.
Đáp án cần chọn là: A
Áp dụng định lý Pytago cho tam giác vuông ABC ta có:
BC2 = AC2 + AB2 => AB2 = 52 – 32
=> AB2 = 16 => AB = 4 cm
Suy ra SABC= A C . A B 2 = 3.4 2 = 6 cm2.
Đáp án cần chọn là: C
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Theo giả thiết AB : AC = 5 : 12
Suy ra A B 5 = A C 12 = A B + A C 5 + 12 = 34 17 = 2 . Do đó AB = 5.2 = 10 (cm);
AC = 2.12 = 24 (cm)
Tam giác ABC vuông tại A, theo định lý Pytago ta có:
B C 2 = A B 2 + A C 2 = 10 2 + 24 2 = 676 , suy ra BC = 26cm
Đáp án cần chọn là: C
Chọn A