Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
a) Xét tam giác AHB và tam giác AHC:
AB = AC (tam giác ABC cân tại A)
^B = ^C (tam giác ABC cân tại A)
BH = CH (do H là trung điểm của BC)
=> Tam giác AHB = Tam giác AHC (c - g - c)
b) Vì H là trung điểm của BC (gt)
=> BH = CH = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\)8 = 4 (cm)
Xét tam giác ABH vuông tại H (AH vuông góc BH):
Ta có: AB2 = AH2 + BH2 (định lý Py ta go)
Thay số: 102 = AH2 + 42
<=> AH2 = 102 - 42
<=> AH2 = 84
<=> AH = \(2\sqrt{21}\) (cm)
c) Xét tam giác ABC cân tại A:
AH là đường trung tuyến (do H là trung điểm của BC)
=> AH là đường cao (TC các đường trong tam giác cân)
Xét tam giác ADM có:
H là trung điểm của AD (HA = HD)
C là trung điểm của DM (CD = CM)
=> HC là đường trung bình của tam giác ADM (định nghĩa đường trung bình trong tam giác)
=> HC // AM (TC đường trung bình trong tam giác)
Mà HC vuông góc AD (do BC vuông góc AH)=> AM vuông góc AD (Từ vuông góc đến //)
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △BAH và △CAH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △BAH = △CAH (ch-cgv)
b, Vì △BAH = △CAH (cmt)
=> BH = CH (2 cạnh tương ứng)
mà BH + CH = BC
=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 102 - 62 = 64
=> AH = 8 (cm)
c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)
Mà ∠HAC = ∠HAB (△CAH = △BAH)
=> ∠AHE = ∠HAB => ∠AHE = ∠HAE
=> △AHE cân tại E
d, Gọi { I } = EH ∩ BF
Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)
Mà ∠ABC = ∠ACB (cmt)
=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH
Mà EA = HE (△AHE cân tại E)
=> EA = BE
Xét △BAH có: E là trung điểm AB (EA = BE) => HE là đường trung tuyến
F là trung điểm AH => BF là đường trung tuyến
EH ∩ BF = { I }
=> I là trọng tâm của △BAH
\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)
Xét △BHI có: BI + HI > BH (bđt △)
\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)
\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)
\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)
a)
Cách 1 là:
Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có:
AC=AB(vì là tam giác cân)
góc B= góc C(vì là tam giác cân)
=>🔺AHC=🔺AHC cạnh huyền-góc nhọn)
=> H là trung điểm của BC
Cách 2:
Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có:
AB=AC(vì là tam giác cân)
AH là cạnh chung
=> 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)
=> H là trung điểm của BC
b)
a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH<AH<AB
=>góc HAB<góc HBA<góc AHB
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
c: góc KAH=góc HAC
góc KHA=góc HAC
=>góc KAH=góc KHA
=>ΔAKH cân tại K
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trung điểm của AB