Bài 11: Cho tam giác ABC có Â = 900, hai cạnh AB và AC tỉ lệ với 3 và 4; BC = 15cm. Tính chu vi của Tam giác ABC.
Ai nhanh mình chon đúng k :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
b: BC=căn 16^2+12^2=20cm
c: AD là phân giác
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7cm; CD=80/7cm
d: AH=12*16/20=192/20=9,6cm
vẽ hình(tự vẽ)
a) Xét △ABC có MN // BC(gt) ,theo định lí Ta-lét ta có:
\(\dfrac{AM}{MB}\)=\(\dfrac{AN}{NC}\) hay \(\dfrac{6}{4}\)=\(\dfrac{8}{NC}\)⇒NC=\(\dfrac{8.4}{6}\)=5,3(cm)
Ta có: AB=AM+BM=6+4=10(cm)
AC=AN+NC=8+5,3=13,3(cm)
Áp dụng định lý Py-ta-go vào △ABC vuông tại A ta có:
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt{10^2+13,3^2}\)=\(\sqrt{276,89}\)=16,6(cm)
Xét △ABC có MN // BC,theo hệ quả định lí Ta -lét ta có:
\(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)hay \(\dfrac{6}{10}\)=\(\dfrac{MN}{16,6}\)⇒MN=\(\dfrac{16,6.6}{10}\)=9,96(cm)
b)
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Đặt AB=a; AC=b
Theo đề, ta có: a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: 3k+4k+5k=36
=>12k=36
=>k=3
=>AB=9; AC=12; BC=15
a. Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)
Áp dụng t/c tia phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)
\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)
\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)
Xét tam giác ABD và tam giác ADE có:
\(\widehat{E}=\widehat{D}=90^0\)
AD: cạnh chung
\(\widehat{BAD}=\widehat{DAE}\) ( gt )
=> tam giác ABD = tam giác ADE ( c.g.c )
=> BD = ED = \(\dfrac{45}{7}cm\)
b. Xét tam giác ABD và tam giác ABC, có:
\(\widehat{BAC}=\widehat{BDA}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)
\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)
\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)
\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)
\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)
\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
Bạn tự vẽ hình nha!!!
Theo định lý PY - TA - GO, ta có:
AB2 + AC2 = BC2
<=> AB2 + AC2 = 152 = 225
Theo đè ra, ta có:
\(\frac{AB^2}{4^2}=\frac{AC^2}{3^2}=\frac{225}{25}=9\)
=> AB2 = 9.42 = 144 => AB = 12
=> AC2 = 9.32 = 81 => AC = 9
Chu vi tam giác ABC là: 12 + 9 + 15 = 36 cm
ỦA bạn có làm sai đâu mà chẳng ai k vậy?