Cho tam giác ABC vuông tại A. AB = 7,5 cm; BC = 12,5cm.
a) Tính diện tích tam giác ABC.
b) Lấy điểm M trên cạnh AB sao cho AM: MB = 1:2. Từ M kẻ đường thẳng song song với BC cắt trung tuyến AF tại E và cắt cạnh AC tại N. Chứng minh E là trung điểm của MN.
c) Gọi G, H, I thứ tự là trung điểm của MC, NB và FE. Chứng minh G, H, I thẳng hàng và tính diện tích ∆IHF
a) AC = 10cm Þ SABC =37,5 (cm2)
b) Chứng minh được M A E ^ = A M E ^ (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.
c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.
S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )
Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2
mik cam on