Cho tam giac ABC nhọn có phân giác góc A & B cắt nhau tại I. Qua I kẻ đường thẳng vuông góc với IC tại C cắt AC, BC tại M, N. Biết rằng AM.BN=IM.IN. Chứng minh AM/AC + BN/BC = CI2 / AC.BC=1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 12 2022
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
27 tháng 8 2021
a: Xét ΔAKH vuông tại K và ΔBKC vuông tại K có
AH=BC
\(\widehat{KAH}=\widehat{KBC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔAKH=ΔBKC