Cho hình bình hành ABCD (AB>BC) , dựng AH và CK vuông góc với BD (H,K thuộc BD)
a) chứng minh ; AH=CK
b)Tứ giác AHCK là hình j tại sao?
c) gọi M,N lầm lượt là hình chiếu vuông góc của B trên DA và DC
chứng minh : DA.DM+DC.DN=BD^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: Ta có: AHCK là hình bình hành
nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của HK
nên O là trung điểm của AC
hay A,O,C thẳng hàng
a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
b: Xét tứ giác AHCK có
AH//CK
AH=CK
DO đó: AHCK là hình bình hành
Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)
CM: a) Xét t/giác AHD và t/giác CKB
có: AD = BC (Vì ABCD là HBH)
\(\widehat{AHD}=\widehat{CKB}=90^0\)(gt)
\(\widehat{ADH}=\widehat{KBC}\)(slt của AD // BC)
=? t/giác AHD = t/giác CKB (ch - gn)
=> AH = CK (2 cạnh t/ứng)
b) Xét tứ giác AHCK có AH // CK (Vì cùng vuông góc với BD)
AH = CK (cmt)
=> AHCK là HBH
c) Xét t/giác ADH và t/giác BDM
có: \(\widehat{MDB}\):chung
\(\widehat{AHD}=\widehat{M}=90^0\) (gt)
=> t/giác ADH đồng dạng t/giác BDM (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{DM}\) => AD.DM = BD.DH (1)
Xét t/giác DCK và t/giác DBN
có \(\widehat{BDN}\):chung
\(\widehat{DKC}=\widehat{N}=90^0\)(gt)
=> t/giác DCK đồng dạng t/giác DBN
=> \(\frac{DC}{DB}=\frac{DK}{DN}\)=> DC. DN = DB.DK (2)
Từ (1) và (2) công vế theo vế, ta được:
DA.DM + DC.DN = BD. DH + DB.DK = BD(DH + DK)
vì DH = BK (vì t/giác ADH = t/giác CBK)
=> DA.DM + DC.DN = BD. (BK + DK) = BD2