Cho ΔABC vuông tại A , AB =9cm ; AC =12cm.Kẻ đường cao AH
a)Chứng minh :ΔABC~ΔHBA
b)Tính độ dài : BC,AH
c) phân giác của góc ACB cắt AH tại E cắt AB tại D tính tỉ số diện tích của 2 tam giác ACD và HCE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
a) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)
Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)
b) Xét tam giác ABC và tam giác HBA có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
c) Xét tam giác ABC vuông tại A có:
AD là trung tuyến
\(\Rightarrow AD=BD=\dfrac{1}{2}BC=\dfrac{1}{2}.15=7,5\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{81}{15}=5,4\left(cm\right)\\AH=\sqrt{9,6\cdot5,4}=7,2\left(cm\right)\end{matrix}\right.\)
Xét ΔACB vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7.2\left(cm\right)\\BH=9.6\left(cm\right)\\CH=5.4\left(cm\right)\end{matrix}\right.\)
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔABC có
BC^2=AB^2+AC^2
=>ΔBCA vuông tại A
Xet ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
c: Xét ΔCBD có
CA,BE là trung tuyến
CA cắt BE tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC
a, Xét ΔABC có AB=9cm, AC=12cm, ∠A=90độ
Áp dụng định lý Py-ta-go:
BC²=AB²+AC²
→BC²=9²+12²
→BC²=225
→BC=15CM
b, Xét ΔABD và ΔEBD có:
∠ABD=∠EBD (BD là tia phân giác)
BD-chung
∠BAD=∠BED=90 độ
→ΔABD=ΔEBD (g.c.g)
→AD=ED (cặp góc tương ứng)
→ΔDEA cân
c, Xét ΔDEC có ∠DEC= 90 độ và DC là cạnh huyền
mà trong tam giác vuông cạnh huyền là cạnh lớn nhất
nên DC>DE
mà DE=DA
suy ra DC>DA
d, Gọi K là giao điểm của AB và CF
Xét ΔBCK có: BF và CA là hai đường cao
và BF∩CA≡D
Mà DE⊥BC→DE∈đường cao từ K
→K,D,E thẳng hàng
→ AB,BE,CF đồng quy
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Xét ΔABC có AB<AC(9cm<12cm)
mà hình chiếu của AB trên BC là DB
và hình chiếu của AC trên BC là DC
nên BD<DC
b) Xét ΔADB vuông tại D và ΔADN vuông tại D có
DB=DN(gt)
AD chung
Do đó: ΔADB=ΔADN(hai cạnh góc vuông)
Suy ra: AB=AN(Hai cạnh tương ứng)
Xét ΔABN có AB=AN(cmt)
nên ΔABN cân tại A(Định nghĩa tam giác cân)
a, Xét tam giác ABC và tam giác HBA ta có
^B _ chung
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=15cm\)
\(\dfrac{AC}{AH}=\dfrac{BC}{AB}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{36}{5}cm\)
\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{27}{5}cm\)
=> CH = 48/5 cm
c, \(\dfrac{S_{ACD}}{S_{HCE}}=\left(\dfrac{AC}{HC}\right)^2=\dfrac{25}{16}\)